Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 26(17): 3271-3284, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28633380

ABSTRACT

The protein ataxin-3 (ATX3) triggers an amyloid-related neurodegenerative disease when its polyglutamine stretch is expanded beyond a critical threshold. We formerly demonstrated that the polyphenol epigallocatechin-3-gallate (EGCG) could redirect amyloid aggregation of a full-length, expanded ATX3 (ATX3-Q55) towards non-toxic, soluble, SDS-resistant aggregates. Here, we have characterized other related phenol compounds, although smaller in size, i.e. (-)-epigallocatechin gallate (EGC), and gallic acid (GA). We analysed the aggregation pattern of ATX3-Q55 and of the N-terminal globular Josephin domain (JD) by assessing the time course of the soluble protein, as well its structural features by FTIR and AFM, in the presence and the absence of the mentioned compounds. All of them redirected the aggregation pattern towards soluble, SDS-resistant aggregates. They also prevented the appearance of ordered side-chain hydrogen bonding in ATX3-Q55, which is the hallmark of polyQ-related amyloids. Molecular docking analyses on the JD highlighted three interacting regions, including the central, aggregation-prone one. All three compounds bound to each of them, although with different patterns. This might account for their capability to prevent amyloidogenesis. Saturation transfer difference NMR experiments also confirmed EGCG and EGC binding to monomeric JD. ATX3-Q55 pre-incubation with any of the three compounds prevented its calcium-influx-mediated cytotoxicity towards neural cells. Finally, all the phenols significantly reduced toxicity in a transgenic Caenorhabditis elegans strain expressing an expanded ATX3. Overall, our results show that the three polyphenols act in a substantially similar manner. GA, however, might be more suitable for antiamyloid treatments due to its simpler structure and higher chemical stability.


Subject(s)
Ataxin-3/metabolism , Catechin/analogs & derivatives , Amyloid/metabolism , Amyloidogenic Proteins , Animals , Caenorhabditis elegans/metabolism , Catechin/chemistry , Catechin/metabolism , Disease Models, Animal , Humans , Hydrogen Bonding , Molecular Docking Simulation , Nerve Tissue Proteins/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Nuclear Proteins/metabolism , Peptides , Phenols/chemistry , Phenols/metabolism
2.
Chemistry ; 21(50): 18383-93, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26538519

ABSTRACT

Epigallocatechin-3-gallate (EGCG) and tetracycline are two known inhibitors of amyloid aggregation able to counteract the fibrillation of most of the proteins involved in neurodegenerative diseases. We have recently investigated their effect on ataxin-3 (AT3), the polyglutamine-containing protein responsible for spinocerebellar ataxia type 3. We previously showed that EGCG and tetracycline can contrast the aggregation process and toxicity of expanded AT3, although by different mechanisms. Here, we have performed further experiments by using the sole Josephin domain (JD) to further elucidate the mechanism of action of the two compounds. By protein solubility assays and FTIR spectroscopy we have first observed that EGCG and tetracycline affect the JD aggregation essentially in the same way displayed when acting on the full-length expanded AT3. Then, by saturation transfer difference (STD) NMR experiments, we have shown that EGCG binds both the monomeric and the oligomeric JD form, whereas tetracycline can only interact with the oligomeric one. Surface plasmon resonance (SPR) analysis has confirmed the capability of the sole EGCG to bind monomeric JD, although with a KD value suggestive for a non-specific interaction. Our investigations provide new details on the JD interaction with EGCG and tetracycline, which could explain the different mechanisms by which the two compounds reduce the toxicity of AT3.


Subject(s)
Amyloid/antagonists & inhibitors , Amyloid/chemistry , Ataxin-3/chemistry , Catechin/analogs & derivatives , Nerve Tissue Proteins/chemistry , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Repressor Proteins/chemistry , Tetracycline/chemistry , Amyloid/metabolism , Ataxin-3/pharmacology , Catechin/chemistry , Catechin/pharmacology , Humans , Nerve Tissue Proteins/metabolism , Peptides , Spectroscopy, Fourier Transform Infrared , Tetracycline/pharmacology
3.
Hum Mol Genet ; 23(24): 6542-52, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25030034

ABSTRACT

The polyglutamine (polyQ)-containing protein ataxin-3 (AT3) triggers the neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) when its polyQ tract is expanded beyond a critical length. This results in protein aggregation and generation of toxic oligomers and fibrils. Currently, no effective treatment is available for such and other polyQ diseases. Therefore, plenty of investigations are being carried on to assess the mechanism of action and the therapeutic potential of anti-amyloid agents. The polyphenol compound epigallocatechin-3-gallate (EGCG) and tetracycline have been shown to exert some effect in preventing fibrillogenesis of amyloidogenic proteins. Here, we have incubated an expanded AT3 variant with either compound to assess their effects on the aggregation pattern. The process was monitored by atomic force microscopy and Fourier transform infrared spectroscopy. Whereas in the absence of any treatment, AT3 gives rise to amyloid ß-rich fibrils, whose hallmark is the typical glutamine side-chain hydrogen bonding, when incubated in the presence of EGCG it generated soluble, SDS-resistant aggregates, much poorer in ß-sheets and devoid of any ordered side-chain hydrogen bonding. These are off-pathway species that persist until the latest incubation time and are virtually absent in the control sample. In contrast, tetracycline did not produce major alterations in the structural features of the aggregated species compared with the control, but substantially increased their solubility. Both compounds significantly reduced toxicity, as shown by the MTT assay in COS-7 cell line and in a transgenic Caenorhabditis elegans strain expressing in the nervous system an AT3 expanded variant in fusion with GFP.


Subject(s)
Amyloid/antagonists & inhibitors , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/drug effects , Catechin/analogs & derivatives , Machado-Joseph Disease/drug therapy , Nerve Tissue Proteins/chemistry , Neuroprotective Agents/pharmacology , Tetracycline/pharmacology , Amyloid/chemistry , Amyloid/metabolism , Animals , Ataxin-3 , COS Cells , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Catechin/pharmacology , Cell Survival/drug effects , Chlorocebus aethiops , Disease Models, Animal , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Hydrogen Bonding , Machado-Joseph Disease/genetics , Machado-Joseph Disease/metabolism , Machado-Joseph Disease/pathology , Microscopy, Atomic Force , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Aggregates/drug effects , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Spectroscopy, Fourier Transform Infrared
4.
PLoS One ; 7(12): e51890, 2012.
Article in English | MEDLINE | ID: mdl-23251648

ABSTRACT

Several neurodegenerative diseases are triggered by proteins containing a polyglutamine (polyQ) stretch expanded beyond a critical threshold. Among these, ataxin-3 (AT3) is the causative agent of spinocerebellar ataxia type-3. We expressed three authentic AT3 variants in Escherichia coli: one normal (AT3-Q24), one expanded (AT3-Q55) and one truncated immediately upstream of the polyQ (AT3-291Δ). Then, based on growth rate reduction, we quantified protein toxicity. We show that AT3-Q55 and -291Δ strongly reduced the growth rate in the early stages (2-4 h), unlike AT3-Q24. This correlated well with the appearance of soluble cytosolic oligomers, but not with the amount of insoluble protein in inclusion bodies (IBs). The impact of AT3-291Δ on cell growth suggests an intrinsic toxicity of the AT3 fragment. Besides the typical Fourier Transform Infrared Spectroscopy (FTIR) signal for intermolecular ß-sheets, the expanded form displayed an additional infrared signature, which was assigned to glutamine side-chain hydrogen bonding and associated with SDS-insoluble fibrils. The elongation of the latter was monitored by Atomic Force Microscopy (AFM). This mirrors the well-known in vitro two-step aggregation pattern of expanded AT3. We also demonstrated that final aggregates of strains expressing expanded or truncated AT3 play a protective role against toxicity. Furthermore, our findings suggest that the mechanisms of toxicity are evolutionarily conserved.


Subject(s)
Escherichia coli/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Peptides/chemistry , Peptides/metabolism , Escherichia coli/genetics , Hydrogen Bonding , Inclusion Bodies/chemistry , Inclusion Bodies/metabolism , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Protein Structure, Secondary
5.
FEBS J ; 279(3): 451-63, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22129356

ABSTRACT

Aggregation of human ataxin-3 (AT3) into amyloid fibrils is responsible for spinocerebellar ataxia type 3. This protein consists of a folded N-terminal domain (Josephin domain, residues 1-182), a central flexible region (residues 183-291), a poly-glutamine sequence of variable length and a short C-terminal flexible region. Very little is known about the influence of the central flexible region on the conformational and aggregation properties of this protein. The present study aimed to investigate the specific role of this portion of the protein (residues 183-291). Accordingly, protein fragments 1-182 (AT3/182) and 1-291 (AT3/291) were produced and compared by thioflavin-T fluorescence, Fourier transform infrared spectroscopy, CD, intrinsic fluorescence and ESI-MS. It is shown that the central flexible region enhances protein aggregation and can populate conformational states with different degrees of compactness. Both monomeric and dimeric partially-folded forms are identified for both protein fragments under denaturing conditions. Partially-folded monomers and dimers accumulate to a larger extent in AT3/291. These species represent good candidates for early intermediates of the aggregation process under the experimental conditions employed in the present study.


Subject(s)
Nerve Tissue Proteins/chemistry , Nuclear Proteins/chemistry , Peptide Fragments/chemistry , Protein Folding , Protein Multimerization , Repressor Proteins/chemistry , Amino Acid Sequence , Ataxin-3 , Humans , Models, Molecular , Protein Structure, Tertiary , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...