Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34833264

ABSTRACT

A method for image analysis was implemented to determine the edge pixels of two biopolymer-based thermoplastic filaments during their hot melt isothermal sintering at 120 °C. Successive inverted ellipses are adjusted to the contour of the sintered filaments and lead to the identification of the parameters of the corresponding lemniscates of Booth. The different steps of the morphological image analysis are detailed, from 8-bit coded acquired images (1 frame/s), to the final fitting of the optimized mathematical functions describing the evolution of the filaments envelope. The complete sequence is composed of an initial pure viscous sintering step during the first minute, followed by viscoelastic swelling combined with melt spreading for a longer time, and then the stabilization of the sintered filaments shape for over 2 min at high temperatures. Using a master curve obtained from Hopper's abacus, the characteristic viscous sintering time is assessed at tvs = 78 s, confirming the one previously found based on the measurement of the bonding neck length alone. Then, the full description of the evolution of the thermoplastic filaments envelope is assessable by image analysis during sintering trials as a result of its digital modeling as successive lemniscates of Booth, reflecting geometry changes in the molten state.

2.
Carbohydr Polym ; 172: 120-129, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28606518

ABSTRACT

This study combines experimental and numerical approaches to investigate the microstructure and mechanical behaviour of non-miscible plasticised starch/zein blends. The concept of Representative Elementary Size (RES) is used to rank the effect of five different plasticisers (cholinium acetate, glycerol, butyl methyl imidazolium chloride, glycerol-choline chloride, urea-choline chloride) inducing microstructural and mechanical changes in the blends. Microstructural and mechanical RESs are derived from microscopy image analysis and Finite Element Modelling of elasticity behaviour of studied blends. Compared to the usual consideration of ultimate mechanical properties (elongation and stress at break), the RES-based approach allows detecting the presence of perfect or imperfect interface between starch and zein particles depending on the nature of plasticiser.

3.
Carbohydr Polym ; 89(3): 955-63, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-24750886

ABSTRACT

An ionic liquid (1-butyl-3-methyl imidazolium chloride [BMIM]Cl) was used as a plasticizer in starch, zein and their blends; and compared to glycerol, a classical plasticizer of starch. Thermoplastic plasticized biopolymer materials were obtained by melt processing using a twin screw microcompounder. Such a device allows simulating a twin screw extrusion process on small batches of a few grams, and to evaluate the necessary specific mechanical energy input for native starch destructurization; and the final apparent melt viscosity. Both were shown to be significantly reduced for starch in presence of [BMIM]Cl (compared to glycerol), while zein processing behavior was less sensitive to the plasticizer used. This induces significant starch/zein viscosity ratio differences, which affect melt mixing of the starch zein blends. In starch rich blends, this results in smaller zein aggregates in the case of [BMIM]Cl. The characterization of the materials indicates that, compared to glycerol, the use of [BMIM]Cl leads to less hygroscopicity, a more efficient plasticization of both starch and zein phases and a compatibilization of starch/zein blends.


Subject(s)
Ionic Liquids/chemistry , Plasticizers/chemistry , Starch/chemistry , Zein/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...