Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 21741, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38066117

ABSTRACT

Climate change modifies environmental conditions, resulting in altered precipitation patterns, moisture availability and nutrient distribution for microbial communities. Changes in water availability are projected to affect a range of ecological processes, including the decomposition of plant litter and carbon cycling. However, a detailed understanding of microbial stress response to drought/flooding is missing. In this study, an intermittent lake is taken up as a model for changes in water availability and how they affect the functional pathways in microbial communities of the decomposing Phragmites australis litter. The results show that most enriched functions in both habitats belonged to the classes of Carbohydrates and Clustering-based subsystems (terms with unknown function) from SEED subsystems classification. We confirmed that changes in water availability resulted in altered functional makeup of microbial communities. Our results indicate that microbial communities under more frequent water stress (due to fluctuating conditions) could sustain an additional metabolic cost due to the production or uptake of compatible solutes to maintain cellular osmotic balance. Nevertheless, although prolonged submergence seemed to have a negative impact on several functional traits in the fungal community, the decomposition rate was not affected.


Subject(s)
Microbiota , Soil Microbiology , Plant Leaves/metabolism , Ecosystem , Microbiota/physiology , Plants , Poaceae , Soil
2.
J Am Soc Mass Spectrom ; 34(10): 2358-2364, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37682634

ABSTRACT

The quality of molecular imaging by means of MeV primary ion-induced secondary ion mass spectrometry by coating with gold was evaluated on different reference organic molecules and plant samples. The enhancement of the secondary ion yield was evident for the majority of the studied analytes, reaching the highest values at gold thicknesses between 0.5 and 2 nm, and increased the intensity up to 5-fold for reference samples and >2-fold for specific peaks within the plant sample. Improved propagation of the electric field due to the target potential on otherwise electrically insulating plant samples was also evident through improved image resolution and by reducing the background in mass spectra. However, detection of several molecules was significantly decreased at even at 1 nm thick gold layer. The results indicated that an optimized sequence of analysis is required to reliably interpret results.

3.
J Fungi (Basel) ; 9(6)2023 May 25.
Article in English | MEDLINE | ID: mdl-37367545

ABSTRACT

Fungi are the leading cause of plant diseases worldwide and are responsible for enormous agricultural and industrial losses on a global scale. Cold plasma (CP) is a potential tool for eliminating or inactivating fungal contaminants from biological material such as seeds and grains. This study used a low-pressure radiofrequency CP system with oxygen as the feed gas to test the decontamination efficacy of different genera and species commonly colonising buckwheat grains. Two widely accepted methods for evaluating fungal decontamination after CP treatment of seeds were compared: direct cultivation technique or contamination rate method (%) and indirect cultivation or colony-forming units (CFU) method. For most of the tested fungal taxa, an efficient decrease in contamination levels with increasing CP treatment time was observed. Fusarium graminearum was the most susceptible to CP treatment, while Fusarium fujikuroi seems to be the most resistant. The observed doses of oxygen atoms needed for 1-log reduction range from 1024-1025 m-2. Although there was some minor discrepancy between the results obtained from both tested methods (especially in the case of Fusarium spp.), the trends were similar. The results indicate that the main factors affecting decontamination efficiency are spore shape, size, and colouration.

4.
Plants (Basel) ; 11(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35631791

ABSTRACT

Buckwheat is an alternative crop known for its many beneficial effects on our health. Fungi are an important cause of plant diseases and food spoilage, often posing a threat to humans and animals. This study reports the effects of low-pressure cold plasma treatment on decontamination and germination of common (CB) and Tartary buckwheat (TB) grains. Both plasma glow and afterglow were applied. The glow treatment was more effective in decontamination: initial contamination was reduced to less than 30% in CB and 10% in TB. Fungal diversity was also affected as only a few genera persisted after the glow treatment; however, it also significantly reduced or even ceased the germination capacity of both buckwheat species. Detailed plasma characterisation by optical spectroscopy revealed extensive etching of outer layers as well as cotyledons. Afterglow treatment resulted in a lower reduction of initial fungal contamination (up to 30% in CB and up to 50% in TB) and had less impact on fungal diversity but did not drastically affect germination: 60-75% of grains still germinated even after few minutes of treatment. The vacuum conditions alone did not affect the fungal population or the germination despite an extensive release of water.

5.
J Fungi (Basel) ; 8(3)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35330286

ABSTRACT

Common reed (Phragmites australis) has high biomass production and is primarily subjected to decomposition processes affected by multiple factors. To predict litter decomposition dynamics in intermittent lakes, it is critical to understand how communities of fungi, as the primary decomposers, form under different habitat conditions. This study reports the shotgun metagenomic sequencing of the initial fungal communities on common reed leaves decomposing under different environmental conditions. We demonstrate that a complex network of fungi forms already on the plant persists into the decomposition phase. Phragmites australis leaves contained at least five fungal phyla, with abundant Ascomycota (95.7%) and Basidiomycota (4.1%), identified as saprotrophs (48.6%), pathotrophs (22.5%), and symbiotrophs (12.6%). Most of the correlations between fungi in fresh and decomposing leaves were identified as co-occurrences (positive correlations). The geographic source of litter and leaf age did not affect the structure and diversity of fungal communities. Keystone taxa were mostly moisture-sensitive. Our results suggest that habitat has a strong effect on the formation of the fungal communities through keystone taxa. Nevertheless, it can also alter the proportions of individual fungal groups in the community through indirect effects on competition between the fungal taxa and their exploitation of favourable conditions.

6.
Int J Mol Sci ; 24(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36613457

ABSTRACT

With the aim to characterize changes caused by grapevine leafroll-associated virus 3 (GLRaV-3) singly or in coinfection with other viruses and to potentially determine genotype-specific or common markers of viral infection, thirty-six parameters, including nutrient status, oxidative stress parameters, and primary metabolism as well as symptoms incidence were investigated in 'Cabernet Franc,' 'Merlot,' 'Pinot Noir,' and 'Tribidrag' grapevine varieties. Host responses were characterized by changes in cellular redox state rather than disturbances in nutrient status and primary metabolic processes. Superoxide dismutase, hydrogen peroxide, and proteins were drastically affected regardless of the type of isolate, the host, and the duration of the infection, so they present cellular markers of viral infection. No clear biological pattern could be ascertained for each of the GLRaV-3 genotypes. There is a need to provide a greater understanding of virus epidemiology in viticulture due to the increasing natural disasters and climate change to provide for global food production security. Finding grape varieties that will be able to cope with those changes can aid in this task. Among the studied grapevine varieties, autochthonous 'Tribidrag' seems to be more tolerant to symptoms development despite numerous physiological changes caused by viruses.


Subject(s)
Closteroviridae , Coinfection , Vitis , Plant Diseases/genetics , Closteroviridae/genetics , Vitis/genetics , Oxidation-Reduction
7.
J Fungi (Basel) ; 7(8)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34436189

ABSTRACT

In view of the ever-growing human population and global environmental crisis, new technologies are emerging in all fields of our life. In the last two decades, the development of cold plasma (CP) technology has offered a promising and environmentally friendly solution for addressing global food security problems. Besides many positive effects, such as promoting seed germination, plant growth, and development, CP can also serve as a surface sterilizing agent. It can be considered a method for decontamination of microorganisms on the seed surface alternative to the traditional use of fungicides. This review covers basics of CP technology and its application in seed decontamination. As this is a relatively young field of research, the data are scarce and hard to compare due to various plasma setups and parameters. On the other hand, the rapidly growing research field offers opportunities for novel findings and applications.

8.
Ecotoxicol Environ Saf ; 222: 112493, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34265529

ABSTRACT

The contribution of 1,8-dihydroxy naphthalene (DHN) melanin to cadmium (Cd) tolerance in two dark septate endophytes (DSE) of the genus Cadophora with different melanin content was investigated in vitro. The DSE isolate Cad#148 with higher melanin content showed higher tolerance to Cd than the less melanised Cad#149. Melanin synthesis was significantly reduced by Cd in both isolates with uninhibited melanin synthesis, in a dose-dependent manner. Inhibition of melanin synthesis by tricyclazole reduced the relative growth of Cad#148 exposed to Cd and did not affect Cad#149. Cd accumulation was not altered by tricyclazole in the two isolates, but it increased catalase and reduced glutathione reductase activity in more melanised Cad#148, indicating higher stress levels. In contrast, in Cad#149 the enzyme activity was less affected by tricyclazole, indicating a more pronounced role of melanin-independent Cd tolerance mechanisms. Cd ligand environment in fungal mycelia was analysed by extended EXAFS (X-ray absorption fine structure). It revealed that Cd was mainly bound to O- and S-ligands, including hydroxyl, carboxyl, phosphate and thiol groups. A similar proportion of S- and O- ligands (~35% and ~65%) were found in both isolates with uninhibited melanin synthesis. Among O-ligands two types with Cd-O-C- and Cd-O-P- coordination were identified. Tricyclazole altered Cd-O- ligand environment in both fungal isolates by reducing the proportion of Cd-O-C- and increasing the proportion of Cd-O-P coordination. DHN-melanin, among other tolerance mechanisms, significantly contributes to Cd tolerance in more melanised DSE fungi by immobilising Cd to hydroxyl groups and maintaining the integrity of the fungal cell wall.


Subject(s)
Cadmium , Endophytes , Antioxidants , Cadmium/toxicity , Melanins , Naphthalenes
9.
Plants (Basel) ; 10(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922511

ABSTRACT

Crop seeds are frequently colonised by fungi from the field or storage places. Some fungi can cause plant diseases or produce mycotoxins, compromising the use of seeds as seeding material, food or feed. We have investigated the effects of cold plasma (CP) on seed germination and diversity of seed-borne fungi in common and Tartary buckwheat. The seeds were treated with CP for 15, 30, 45, 60, 90, and 120 s in a low-pressure radiofrequency system using oxygen as the feed gas. The fungi from the seed surface and fungal endophytes were isolated using potato dextrose agar plates. After identification by molecular methods, the frequency and diversity of fungal strains were compared between CP treated and chemically surface-sterilised (30% of H2O2) seeds. CP treatments above 60 s negatively affected the germination of both buckwheat species. A significant reduction in fungal frequency and diversity was observed after 90 s and 120 s in common and Tartary buckwheat, respectively. The filamentous fungi of genera Alternaria and Epicoccum proved to be the most resistant to CP. The results of our study indicate that CP treatment used in our study may be applicable in postharvest and food production, but not for further seed sowing.

10.
Data Brief ; 34: 106692, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33426247

ABSTRACT

The data presented in this article are related to the research article entitled "Root-associated community composition and co-occurrence patterns of fungi in wild grapevine". This dataset documents the diversity of endophytic and rhizoplane fungi found on the roots of 38 wild grapevine plants growing at four locations (Krka, Neretva, Psunj and Paklenica) in Croatia and Bosnia and Herzegovina. We record here 48 identified fungal operational taxonomic units (OTUs) from 3 phyla, 23 families and 30 genera. The material in this Data in Brief paper comprised the data on the identification of OTUs with their corresponding ecological niche, abundance distribution of each fungal OTU recorded in each of the host and location, restrictedness and with fit to the Sloan neutral community model.

11.
Genes (Basel) ; 11(9)2020 08 20.
Article in English | MEDLINE | ID: mdl-32825336

ABSTRACT

The genetic diversity and relationship between wild (Vitis vinifera L. subsp. sylvestris (Gmel.) Hegi and cultivated (V. vinifera L. subsp. vinifera) grapevine in the western Balkan region and Central Europe have not been studied together previously, although this area has a rich viticultural past. Here, we studied wild grapevine populations sampled from their natural habitats in several countries of the western Balkan region and Central Europe. Their genetic diversity and structure were compared to cultivars that are traditionally in use in this region. A sample set of 243 accessions was genotyped at 20 nuclear microsatellite loci, including 167 sylvestris and 76 diverse vinifera cultivars. The genetic diversity of the wild grapevines was lower than that of cultivars by all genetic parameters. Both hierarchical and nonhierarchical clustering methods differentiated two main groups, indicating clear separation between wild and cultivated vines but also revealed clear gene flow between the cultivated and wild gene pools through overlaps and admixed ancestry values in the graphs. There was greater affinity to the wild grapes in Central European cultivars than in Balkan cultivars. Fine arrangement of the structure among cultivated grapevines showed differentiation among Central European and Balkan cultivars. These results confirm the divergence of wild grapes from vinifera and highlight the "crossroad" role of the western Balkan peninsula in the broader context of European viticulture.


Subject(s)
DNA, Plant/genetics , Gene Flow , Genetic Variation , Microsatellite Repeats , Plant Proteins/genetics , Vitis/genetics , Balkan Peninsula , DNA, Plant/analysis , Europe , Vitis/classification , Vitis/growth & development
12.
Food Chem Toxicol ; 135: 110974, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31743745

ABSTRACT

During tea preparation mineral elements are extracted from the dried leaves of tea (Camellia sinensis (L.) Kuntze) plants into the solution. Micro-particle induced X-ray emission was employed to investigate the spatial distribution of magnesium (Mg), calcium (Ca) and manganese (Mn) in the young and old leaves of tea plants grown in the absence and presence of aluminium (Al) in the substrate. Results revealed that in tea leaves the largest concentrations of Mg occurred in the epidermis, of Ca in oxalate crystals and of Mn in epidermis and oxalate crystals; there was a leaf-age effect on tissue-specific concentrations of Mg, Ca and Mn with all tissues of old leaves containing larger concentrations of Mg, Ca and Mn than young leaves; supplementation of substrate with Al reduced concentrations of Mg, Ca and Mn in the old leaves, and a link between the distribution of Mg, Ca and Mn in the tea leaves with the extraction efficiencies of these elements into the tea was possible. We conclude that old leaves of tea plants cultivated under conditions of low Al availability will have the largest concentrations of Mg, Ca and Mn and may represent most acceptable ingredient for the preparation of tea.


Subject(s)
Calcium/metabolism , Camellia sinensis/chemistry , Magnesium/metabolism , Manganese/metabolism , Plant Leaves/chemistry , Tea/chemistry , Aluminum/metabolism , Calcium/analysis , Magnesium/analysis , Manganese/analysis , Solid Phase Extraction , Spectrometry, X-Ray Emission , Tissue Distribution
13.
Chemosphere ; 180: 178-185, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28407547

ABSTRACT

Two plant pathogenic fungi, Botrytis cinerea and Alternaria alternata, isolated from crop plants, were exposed to Cu in ionic (Cu2+), microparticulate (MP, CuO) or nanoparticulate (NP, Cu or CuO) form, in solid and liquid culturing media in order to test fungal response and toxic effects of the mentioned compounds for the potential use as fungicides. B. cinerea has shown pronounced growth and lower levels of lipid peroxidation compared to A. alternata. Its higher resistance/tolerance is attributed mainly to biotransformation of CuO and Cu NPs and CuO MPs into a blue compound at the fungal/culturing media interface, recognized by Cu K-edge EXAFS analysis as Cu-oxalate complex. The pronounced activity of catechol-type siderophores and organic acid secretion in B. cinerea induce leaching and mobilization of Cu ions from the particles and their further complexation with extracellularly secreted oxalic acid. The ability of pathogenic fungus to biotransform CuO MPs and NPs hampers their use as fungicides. However the results show that B. cinerea has a potential to be used in degradation of Cu(O) nanoparticles in environment, copper extraction and purification techniques.


Subject(s)
Biotransformation , Botrytis/metabolism , Copper/metabolism , Nanoparticles/metabolism , Copper/analysis , Copper/toxicity , Culture Media , Fungicides, Industrial/analysis , Fungicides, Industrial/metabolism , Fungicides, Industrial/toxicity , Nanoparticles/toxicity , Oxides , Plants/metabolism
14.
Fungal Biol ; 120(5): 666-78, 2016 05.
Article in English | MEDLINE | ID: mdl-27109364

ABSTRACT

Seed-associated fungal communities affect multiple parameters of seed quality at all stages of production, from seed development to post-harvest storage and germination. We therefore investigated the diversity and dynamics of fungal communities in the seeds of common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (F. tataricum) from harvest to 1 y of storage. Fungal populations in seeds were relatively stable, comprised mainly of field fungi. Incidence of fungi was most likely determined by fungal interspecies direct interactions, as well as by their synthesis of volatile organic compounds. Most prominent antagonistic interactions were seen for two plant pathogens, Alternaria alternata on Botrytis cinerea. Detrimental effects of the fungi on seed germination and seedling development were related to fungal extracellular enzyme activity, and in particular to amylase, cellulase and, polyphenol oxidase. Polyphenol and tannin concentrations in buckwheat seedlings were related to fungal growth rate and intensity of fungal cellulase activity, respectively, which suggests that physical penetration of the fungi through the host tissues is probably the stimulus for the activation of plant defence reactions in these seedlings.


Subject(s)
Biota , Fagopyrum/microbiology , Fungi/isolation & purification , Germination , Secondary Metabolism , Seedlings/growth & development , Seeds/microbiology , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Fungi/classification , Seedlings/metabolism , Sequence Analysis, DNA
15.
J R Soc Interface ; 10(84): 20130296, 2013 Jul 06.
Article in English | MEDLINE | ID: mdl-23676898

ABSTRACT

Bulk element concentrations of whole grain and element spatial distributions at the tissue level were investigated in wheat (Triticum aestivum) grain grown in Zn-enriched soil. Inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry were used for bulk analysis, whereas micro-proton-induced X-ray emission was used to resolve the two-dimensional localization of the elements. Soil Zn application did not significantly affect the grain yield, but did significantly increase the grain Ca, Fe and Zn concentrations, and decrease the grain Na, P and Mo concentrations; bulk Mg, S, K, Mn, Cu, Cd and Pb concentrations remained unchanged. These changes observed in bulk element concentrations are the reflection of tissue-specific variations within the grain, revealing that Zn application to soil can lead to considerable alterations in the element distributions within the grain, which might ultimately influence the quality of the milling fractions. Spatially resolved investigations into the partitioning of the element concentrations identified the tissues with the highest element concentrations, which is of utmost importance for accurate prediction of element losses during the grain milling and polishing processes.


Subject(s)
Food Technology/methods , Seeds/chemistry , Soil/analysis , Triticum/chemistry , Calcium/analysis , Food Handling , Mass Spectrometry , Metals, Heavy/analysis , Potassium/analysis , Seeds/cytology , Seeds/metabolism , Slovenia , Spectrometry, X-Ray Emission , Sulfur/analysis , Triticum/metabolism , Zinc/analysis , Zinc/pharmacokinetics
16.
J Hazard Mater ; 248-249: 371-8, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23416480

ABSTRACT

Understanding the uptake, accumulation and distribution of toxic elements in plants is crucial to the design of effective phytoremediation strategies, especially in the case of complex multi-element pollution. Using micro-proton induced X-ray emission, the spatial distribution of Na, Mg, Al, Si, P, S, Cl, K, Ca, Mn, Fe, Zn, As, Br, Rb, Sr, Cd and Pb have been quantitatively resolved in roots and rhizomes of an obligate wetland plant species, Typha latifolia, treated with a mixture of 100 µM each of As, Cd and Pb, together. The highest concentrations of As, Cd and Pb were found in the roots of the T. latifolia, with tissue-specific distributions. The As was detected in the root rhizodermis, and in the rhizome the majority of the As was within the vascular tissues, which indicates the high mobility of As within T. latifolia. The Cd was detected in the root exodermis, and in the vascular bundle and epidermis of the rhizome. The highest Pb concentrations were detected in the root rhizodermis and exodermis, and in the epidermis of the rhizome. These data represent an essential step in the resolution of fundamental questions in plant ionomics.


Subject(s)
Arsenic/metabolism , Environmental Pollutants/metabolism , Metals/metabolism , Typhaceae/metabolism , Biodegradation, Environmental , Plant Leaves/metabolism , Plant Roots/metabolism , Rhizome/metabolism , Spectrometry, X-Ray Emission
17.
Mycorrhiza ; 23(3): 209-19, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23053577

ABSTRACT

The colonisation and diversity of arbuscular mycorrhizal fungi (AMF) on roots of grapevines were investigated in production vineyards located along a 500-km-long stretch of karst along the coast of the Adriatic Sea. AMF communities on roots of grapevines were analysed using temporal temperature gel electrophoresis and sequencing of the 18S and internal transcribed spacer segments of the rDNA operon. The AMF colonisation of these grapevines roots was consistent along the whole of this east Adriatic karst region, at 64 to 82% of fine roots. The comparison of the AMF communities on the roots of these grapevines showed that the fungal community associated with grapevine roots seems to be relatively stable, with inter-vineyard variability comparable to intra-vineyard variability. Some of the changes in the fungal communities were attributed to environmental factors (plant-available P) and location of the vineyard, although the latter could also have been influenced by an unmeasured environmental factor. A total of 27 taxa of fungi were identified, including taxa from Glomus group B, based on the sequencing of 18S rDNA. Sequencing of the internal transcribed spacer rDNA yielded 30 different fungal taxa, which comprised eight different Glomeromycota taxa, including Glomus sinuosum and Glomus indicum. To our knowledge, this is the first report of grapevine colonisation by G. indicum.


Subject(s)
Mycorrhizae/genetics , Vitis/microbiology , Base Sequence , Cloning, Molecular , DNA, Ribosomal Spacer/genetics , Gene Expression Regulation, Fungal , Mediterranean Region , Mycorrhizae/classification , Mycorrhizae/isolation & purification , RNA, Ribosomal, 18S/genetics , Slovenia
18.
Sci Total Environ ; 427-428: 339-46, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22542302

ABSTRACT

A better understanding of the mechanisms that govern copper (Cu) uptake, distribution and tolerance in Brassica carinata plants in the presence of chelators is needed before significant progress in chelate-assisted Cu phytoextraction can be made. The aims of this study were therefore to characterise (S,S)-N,N'-ethylenediamine disuccinic acid (EDDS)-assisted Cu uptake, and to compare the spatial distribution patterns of Cu in the roots and leaves of B. carinata plants. The plants were treated with 30 µM or 150 µM CuSO(4) or CuEDDS in hydroponic solution. Quantitative Cu distribution maps and concentration profiles across root and leaf cross-sections of the desorbed plants were obtained by micro-proton induced X-ray emission. In roots, the 30 µM treatments with both CuSO(4) and CuEDDS resulted in higher Cu concentrations in epidermal/cortical regions. At 150 µM CuSO(4), Cu was mainly accumulated in root vascular bundles, whereas with 150 µM CuEDDS, Cu was detected in endodermis and the adjacent inner cortical cell layer. Under all treatments, except with a H(+)-ATP-ase inhibitor, the Cu in leaves was localised mainly in vascular tissues. The incubation of plants with 150 µM CuEDDS enhanced metal translocation to shoots, in comparison to the corresponding CuSO(4) treatment. Inhibition of H(+)-ATPase activity resulted in reduced Cu accumulation in 30 µM CuEDDS-treated roots and 150 µM CuEDDS-treated leaves, and induced changes in Cu distribution in the leaves. This indicates that active mechanisms are involved in retaining Cu in the leaf vascular tissues, which prevent its transport to photosynthetically active tissues. The physiological significance of EDDS-assisted Cu uptake is discussed.


Subject(s)
Brassica/metabolism , Copper Sulfate/metabolism , Copper/metabolism , Ethylenediamines/metabolism , Succinates/metabolism , Biodegradation, Environmental , Inactivation, Metabolic , Plant Leaves , Plant Roots/metabolism , Plant Shoots/metabolism , Soil Pollutants , Spectrometry, X-Ray Emission , Vanadates/metabolism
19.
Metallomics ; 4(4): 333-41, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22370692

ABSTRACT

Typha latifolia is a plant species widely used for phytoremediation. Accumulation, localization and distribution of Pb and mineral nutrients were investigated in roots, rhizomes and leaves of Typha latifolia grown at 0, 50, 100 and 250 µM Pb concentrations in a pot experiment under controlled conditions. Bulk elemental concentrations were determined by X-ray fluorescence (XRF) spectroscopy whereas micro-proton-induced X-ray emission (micro-PIXE) was used for element localization in root and rhizome tissues. Gradual increase in bulk Pb concentrations was observed in Typha latifolia roots and rhizomes treated with increasing Pb concentrations, however in rhizomes Pb concentrations were an order of magnitude lower than in roots. In leaves Pb concentrations were around the limit of detection for XRF (~20 µg g(-1)). An increase in concentration of K and Ca in roots, rhizomes and leaves, of iron and zinc in roots and leaves, and of Mn in rhizomes was observed either at 50 and/or 100 µM Pb treatments, whereas for K and Ca in roots, rhizomes and leaves, Fe and Zn in roots and leaves and Mn in rhizomes, or at 250 µM Pb treatment the increase was seen for concentrations of Fe and Zn in rhizomes and Cu in roots. Mn concentrations decreased with Pb treatments in roots and leaves. Element localization using micro-PIXE analysis demonstrated Pb accumulation in epidermal and cortical tissues of treated roots and rhizomes, while in endodermis and vascular tissues Pb was not detected. A displacement of Ca from epidermal to cortical tissues was observed in Pb treated roots and rhizomes, pointing to cell wall immobilization of Pb as one of the tolerance mechanisms in Typha latifolia. High level of colocalization of Pb with P (r = 0.60), S (r = 0.37) and Zn (r = 0.70) was observed in Pb treated roots, while in rhizomes colocalization with the mentioned elements was still positive, but not that prominent. These results indicate that Pb may form complexes with phosphorus and sulfur compounds in roots and rhizomes, which may also represent attraction sites for binding Zn. Because of its large root and rhizome surface area acting as main sites for Pb adsorption, Typha latifolia may represent potentially efficient plant species for phytoremediation of Pb contaminated soils and waters.


Subject(s)
Culture Media/chemistry , Lead/analysis , Spectrometry, X-Ray Emission/methods , Typhaceae/chemistry , Biodegradation, Environmental , Calcium/analysis , Calcium/metabolism , Copper/analysis , Copper/metabolism , Culture Media/metabolism , Iron/analysis , Iron/metabolism , Lead/metabolism , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/chemistry , Plant Roots/growth & development , Plant Roots/metabolism , Potassium/analysis , Potassium/metabolism , Rhizome/chemistry , Rhizome/growth & development , Rhizome/metabolism , Typhaceae/growth & development , Typhaceae/metabolism , Zinc/analysis , Zinc/metabolism
20.
J Exp Bot ; 62(11): 3929-39, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21447756

ABSTRACT

Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved.


Subject(s)
Seeds/ultrastructure , Triticum/ultrastructure , Vacuoles/ultrastructure , Metals/chemistry , Phosphorus/chemistry , Phytic Acid/chemistry , Seeds/chemistry , Spectrometry, X-Ray Emission , Synchrotrons , Vacuoles/chemistry , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...