Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Life (Basel) ; 13(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38137895

ABSTRACT

Water deficit poses significant environmental stress that adversely affects the growth and productivity of durum wheat. Moreover, projections of climate change suggest an increase in the frequency and severity of droughts, particularly in arid regions. Consequently, there is an urgent need to develop drought-tolerant and high-yielding genotypes to ensure sustained production and global food security in response to population growth. This study aimed to explore the genetic diversity among local and exotic durum wheat genotypes using simple sequence repeat (SSR) markers and, additionally, to explore the combining ability and agronomic performance of assessed durum wheat genotypes and their 28 F1 crosses under normal and drought stress conditions. The investigated SSRs highlighted and confirmed the high genetic variation among the evaluated parental durum wheat genotypes. These diverse eight parental genotypes were consequently used to develop 28 F1s through a diallel mating design. The parental durum genotypes and their developed 28 F1s were assessed under normal and drought stress conditions. The evaluated genotypes were analyzed for their general and specific combining abilities as well as heterosis for agronomic traits under both conditions. The local cultivar Bani-Suef-7 (P8) is maintained as an effective combiner for developing shortened genotypes and improving earliness. Moreover, the local cultivars Bani-Suef-5 (P7) and Bani-Suef-7 (P8) along with the exotic line W1520 (P6) demonstrated excellent general combining ability for improving grain yield and its components under drought stress conditions. Furthermore, valuable specific hybrid combinations, W988 × W994 (P1 × P2), W996 × W1518 (P3 × P5), W1011 × W1520 (P4 × P6), and Bani-Suef-5 × Bani-Suef-7 (P7 × P8), were identified for grain yield and its components under drought stress conditions. The assessed 36 genotypes were grouped according to tolerance indices into five clusters varying from highly drought-sensitive genotypes (group E) to highly drought-tolerant (group A). The genotypes in cluster A (two crosses) followed by thirteen crosses in cluster B displayed higher drought tolerance compared to the other crosses and their parental genotypes. Subsequently, these hybrids could be considered valuable candidates in future durum wheat breeding programs to develop desired segregants under water-deficit conditions. Strong positive relationships were observed between grain yield and number of grains per spike, plant height, and 1000-grain weight under water-deficit conditions. These results highlight the significance of these traits for indirect selection under drought stress conditions, particularly in the early stages of breeding, owing to their convenient measurability.

2.
Front Microbiol ; 14: 1214845, 2023.
Article in English | MEDLINE | ID: mdl-37829451

ABSTRACT

The present crisis at hand revolves around the need to enhance plant resilience to various environmental stresses, including abiotic and biotic stresses, to ensure sustainable agriculture and mitigate the impact of climate change on crop production. One such promising approach is the utilization of plant growth-promoting rhizobacteria (PGPR) to mediate plant resilience to these stresses. Plants are constantly exposed to various stress factors, such as drought, salinity, pathogens, and nutrient deficiencies, which can significantly reduce crop yield and quality. The PGPR are beneficial microbes that reside in the rhizosphere of plants and have been shown to positively influence plant growth and stress tolerance through various mechanisms, including nutrient solubilization, phytohormone production, and induction of systemic resistance. The review comprehensively examines the various mechanisms through which PGPR promotes plant resilience, including nutrient acquisition, hormonal regulation, and defense induction, focusing on recent research findings. The advancements made in the field of PGPR-mediated resilience through multi-omics approaches (viz., genomics, transcriptomics, proteomics, and metabolomics) to unravel the intricate interactions between PGPR and plants have been discussed including their molecular pathways involved in stress tolerance. Besides, the review also emphasizes the importance of continued research and implementation of PGPR-based strategies to address the pressing challenges facing global food security including commercialization of PGPR-based bio-formulations for sustainable agricultural.

3.
Plants (Basel) ; 12(20)2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37896108

ABSTRACT

Faba bean is considered one of the most prominent grain legumes, with high protein content for human food consumption and livestock feed. The present study evaluated the nature of gene action and determined the genetic diversity among different populations of three crosses for resistance to foliar diseases at the molecular level. Analysis of variance exposed significant differences among the generations for all measured traits. Both dominance and additive gene effects were essential, but dominance genes, for the most part, exhibited greater effects than additive ones. This indicates an essential role for dominant genes alongside the additives one in inheriting such traits. The third cross (Marina × Giza 40) gave desired significant and positive (additive × additive) values for the number of pods/plant, seeds/plant, and seed yield/plant, in addition to desirable negative values for chocolate spot and rust characteristics. Furthermore, assessing the lines under study using seven SCoT primers disclosed three bands with recorded molecular weights of 260, 207, and 178 bp, generated by SCoT-1, SCoT-4, and SCoT-7 primers, respectively. These bands exist in the resistant parent (Marina), which could be attributed to the high-disease-resistance phenotypes, and they are absent in the sensitive parent (Giza 40) and other putative sensitive lines. Based on the molecular profiles and the genetic similarity between parents and the selected lines, the highest similarity value (0.91) was detected between Marina genotype and BC1, revealing a high foliar disease resistance. Meanwhile, Giza 40 (susceptible to foliar diseases) exhibited the maximum value (0.93) with F2. Additionally, cluster analysis based on genetic relationships was performed, and a high level of correlation between the results of PCR-based SCoT analysis and the foliar disease reactions was observed in the field. Consequently, this study concluded that SCoT markers created reliable banding profiles for evaluating genetic polymorphism among faba bean lines, which could be a foundation for developing an efficient breeding program.

4.
BMC Plant Biol ; 23(1): 398, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37605164

ABSTRACT

BACKGROUND: Water deficit is one of the most significant abiotic factors affecting rice and agricultural production worldwide. In hybrid rice, cytoplasmic male sterility (CMS) is an important technique for creating high-yielding crop based on heterosis. The phytohormone kinetin (Kin) regulates cell division in plant during the early stages of grain formation, as well as flow assimilation and osmotic regulation under water stress. The present study performed to estimate the effects of irrigation intervals (irrigation each six days (I6), nine days (I9), twelve days (I12) and fifteen days (I15) against continuous flooding (CF, each three days)) and kinetin exogenously application (control, 15 mg L-1 and 30 mg L-1) on hybrid rice (L1, IR69625A; L2, G46A and R, Giza 178 R) seed production. RESULTS: Leaves traits (Chlorophyll content (CHC), relative water content (RWC), stomatal conductance (SC), Leaf temperature (LT) and transpiration rate (TR)), floral traits such as style length (SL) and total stigma length (TSL), in addition to root traits (i.e., root length (RL), root volume (RV), root: shoot ratio (RSR), root thickness (RT), root xylem vessels number (RXVN) and root xylem vessel area (RXVA) were evaluated and a significant enhancement in most traits was observed. Applying 30 mg L-1 kinetin significantly and positively enhanced all growth, floral and roots traits (RV and RXVA recorded the most increased values by 14.8% and 23.9%, respectively) under prolonging irrigation intervals, in comparison to non-treated plants. CONCLUSIONS: Subsequently, spraying kinetin exogenously on foliar could be an alternative method to reduce the harmful influences of water deficiency during seed production in hybrid rice.


Subject(s)
Oryza , Kinetin/pharmacology , Oryza/genetics , Seeds , Plant Leaves , Edible Grain
5.
Plants (Basel) ; 12(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37111812

ABSTRACT

The plant-growth-promoting rhizobacteria (PGPR) in the rhizosphere affect plant growth, health, and productivity, as well as soil-nutrient contents. They are considered a green and eco-friendly technology that will reduce chemical-fertilizer usage, thereby reducing production costs and protecting the environment. Out of 58 bacterial strains isolated in Qassim, Saudi Arabia, four strains were identified by the 16S rRNA as the Streptomyces cinereoruber strain P6-4, Priestia megaterium strain P12, Rossellomorea aquimaris strain P22-2, and Pseudomonas plecoglossicida strain P24. The plant-growth-promoting (PGP) features of the identified bacteria involving inorganic phosphate (P) solubilization, the production of indole acetic acid (IAA), and siderophore secretion were assessed in vitro. Regarding the P solubilization, the previous strains' efficacy reached 37.71%, 52.84%, 94.31%, and 64.20%, respectively. The strains produced considerable amounts of IAA (69.82, 251.70, 236.57, and 101.94 µg/mL) after 4 days of incubation at 30 °C. Furthermore, the rates of siderophore production reached 35.51, 26.37, 26.37, and 23.84 psu, respectively, in the same strains. The application of the selected strains in the presence of rock phosphate (RP) with tomato plants under greenhouse conditions was evaluated. The plant growth and P-uptake traits positively and significantly increased in response to all the bacterial treatments, except for some traits, such as plant height, number of leaves, and leaf DM at 21 DAT, compared to the negative control (rock phosphate, T2). Notably, the P. megaterium strain P12 (T4), followed by R. aquimaris strain P22-2 (T5), revealed the best values related to plant height (at 45 DAT), number of leaves per plant (at 45 DAT), root length, leaf area, leaf-P uptake, stem P uptake, and total plant P uptake compared to the rock phosphate. The first two components of the PCA (principal component analysis) represented 71.99% (PCA1 = 50.81% and PCA2 = 21.18%) of the variation at 45 DAT. Finally, the PGPR improved the vegetative-growth traits of the tomato plants through P solubilization, IAA, and siderophore production, and ameliorated the availability of nutrients. Thus, applying in PGPR in sustainable agriculture will potentially reduce production costs and protect the environment from contamination by chemical fertilizers and pesticides.

6.
Plants (Basel) ; 13(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38202383

ABSTRACT

Rice production faces challenges related to diverse climate change processes. Heat stress combined with low humidity, water scarcity, and salinity are the foremost threats in its cultivation. The present investigation aimed at identifying the most resilient rice genotypes with yield stability to cope with the current waves of climate change. A total of 34 rice genotypes were exposed to multilocation trials. These locations had different environmental conditions, mainly normal, heat stress with low humidity, and salinity-affected soils. The genotypes were assessed for their yield stability under these conditions. The newly developed metan package of R-studio was employed to perform additive main effects and multiplicative interactions modelling and genotype-by-environment modelling. The results indicated that there were highly significant differences among the tested genotypes and environments. The main effects of the environments accounted for the largest portion of the total yield sum of squared deviations, while different sets of genotypes showed good performance in different environments. AMMI1 and GGE biplots confirmed that Giza179 was the highest-yielding genotype, whereas Giza178 was considered the most-adopted and highest-yielding genotype across environments. These findings were further confirmed by the which-won-where analysis, which explained that Giza178 has the greatest adaptability to the different climatic conditions under study. While Giza179 was the best under normal environments, N22 recorded the uppermost values under heat stress coupled with low humidity, and GZ1968-S-5-4 manifested superior performance regarding salinity-affected soils. Giza 177 was implicated regarding harsh environments. The mean vs. stability-based rankings indicated that the highest-ranked genotypes were Giza179 > Giza178 > IET1444 > IR65600-77 > GZ1968-S-5-4 > N22 > IR11L236 > IR12G3213. Among them, Giza178, IR65600-77, and IR12G3213 were the most stable genotypes. Furthermore, these results were confirmed by cluster-analysis-based stability indices. A significant and positive correlation was detected between the overall yield under all the environments with panicle length, number of panicles per plant, and thousand grain weight. Our study sheds light on the notion that the Indica/Japonica and Indica types have greater stability potential over the Japonica ones, as well as the potential utilization of genotypes with wide adaptability, stability, and high yield, such as Giza178, in the breeding programs for climate change resilience in rice.

7.
Plants (Basel) ; 11(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36501356

ABSTRACT

The genus Streptomyces is the most abundant and essential microbes in the soil microbial community. Streptomyces are familiar and have great potential to produce a large variety of bioactive compounds. This genus considers an efficient biofertilizer based on its plant growth-promoting activities. Based on their ability to produce a wide varieties of bioactive molecules, the present study aimed to explore the potential plant growth promotion of four Streptomyces strains and their role in enhancing cucumber growth and yield under greenhouse conditions. Streptomyces sp. strain HM2, Streptomyces thinghirensis strain HM3, Streptomyces sp. strain HM8, and Streptomyces tricolor strain HM10 were chosen for the current study. Plant growth-promoting (PGP) features, i.e., indole acetic acid (IAA) production, siderophore excretion, and solubilizing phosphate, were evaluated in vitro. All four strains produced IAA, siderophore, and immobilized inorganic phosphate. Following 4 days of incubation at 30 °C, strains HM2, HM3, HM8, and HM10 produced copious amounts of IAA (18, 22, 62, and 146 µg/mL, respectively) and siderophores (42.59, 40.01, 16.84, 64.14% SU, respectively). At the same time, P solubilization efficacy scored 64.3%, 84.4%, 57.2%, and 81.6% with the same frequency. During in planta evaluation, selected Streptomyces strains combined with rock phosphate were assessed as biofertilizers on the growth and yield of cucumber plants. Under all treatments, positive and significant differences in studied traits were manifested except dry stem matter (SDM), net assimilation rate (NAR), relative growth rate (RGR), and fruit firmness (FF). Treatment T4 (rock phosphate + strain HM3) followed by T5 (rock phosphate + strain HM8) revealed the best results for plant height (PH), number of leaves per plant (NLPP), root length (RL), number of fruits per plant (NFPP), fruit length (FL), fruit diameter (FD), fruit fresh weight per plant (FFWPP), soil P (SP) after 21 DAT, and soil P at the end of the experiment. Notably, T6 (rock phosphate + strain HM10) caused a considerable increase in leaf area (LA). Plant growth-promoting bacteria enhance plant growth and yield through phosphorus solubilizing, improve nutrient availability, produce phytohormones, and support plant growth under abiotic stress. These features are important for sustainable agriculture and reducing environmental pollution with chemical fertilizers and pesticides.

8.
Plants (Basel) ; 11(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36559523

ABSTRACT

In rice, cytoplasmic male sterility (CMS) represents an irreplaceable strategy for producing high-yielding hybrid rice based on the commercial exploitation of heterosis. Thereupon, enhancing floral traits and outcrossing rates in CMS lines increase hybrid seed production and ensure global food security. The exogenous application of cyanobacteria could enhance outcrossing rates in CMS lines and, accordingly, hybrid rice seed production. In the present study, we aimed at exploring the impact of cyanobacteria implementation such as Anabaena oryzae, Nostoc muscorum, and their mixture to promote the floral traits, outcrossing rates, and seed production in hybrid rice. The impact of cyanobacteria (Anabaena Oryza (T2), Nostoc muscorum (T3), and their combination (T4) versus the untreated control (T1) was investigated for two years on the growth, floral, and yield traits of five diverse CMS lines, namely IR69625A (L1), IR58025A (L2), IR70368A (L3), G46A (L4), and K17A(L5). The evaluated CMS lines exhibited significant differences in all measured floral traits (days to heading (DTH), total stigma length (TSL), stigma width (SW), duration of spikelet opening (DSO), spikelet opening angle (SOA)). Additionally, L4 displayed the uppermost total stigma length and stigma width, whereas L1 and L5 recorded the best duration of spikelet opening and spikelet opening angle. Notably, these mentioned CMS lines exhibited the highest plant growth and yield traits, particularly under T4 treatment. Strong positive relationships were distinguished between the duration of the spikelet opening, panicle exertion, panicle weight, seed set, grain yield, total stigma length, spikelet opening angle, stigma width, and number of fertile panicles per hill. Cyanobacteria is a potential promising tool to increase floral traits and seed production in hybrid rice.

9.
Planta ; 257(2): 27, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36583789

ABSTRACT

MAIN CONCLUSION: This review is an effort to provide in-depth knowledge of microbe's interaction and its role in crop microbiome using combination of advanced molecular and OMICS technology to translate this information for the sustenance of agriculture. Increasing population, climate change and exhaustive agricultural practices either influenced nutrient inputs of soil or generating biological and physico-chemical deterioration of the soils and affecting the agricultural productivity and agro-ecosystems. Alarming concerns toward food security and crop production claim for renewed attention in microbe-based farming practices. Microbes are omnipresent (soil, water, and air) and their close association with plants would help to accomplish sustainable agriculture goals. In the last few decades, the search for beneficial microbes in crop production, soil fertilization, disease management, and plant growth promotion is the thirst for eco-friendly agriculture. The crop microbiome opens new paths to utilize beneficial microbes and manage pathogenic microbes through integrated advanced biotechnology. The crop microbiome helps plants acquire nutrients, growth, resilience against phytopathogens, and tolerance to abiotic stresses, such as heat, drought, and salinity. Despite the emergent functionality of the crop microbiome as a complicated constituent of the plant fitness, our understanding of how the functionality of microbiome influenced by numerous factors including genotype of host, climatic conditions, mobilization of minerals, soil composition, nutrient availability, interaction between nexus of microbes, and interactions with other external microbiomes is partially understood. However, the structure, composition, dynamics, and functional contribution of such cultured and uncultured crop microbiome are least explored. The advanced biotechnological approaches are efficient tools for acquiring the information required to investigate the microbiome and extract data to develop high yield producing and resistant variety crops. This knowledge fills the fundamental gap between the theoretical concepts and the operational use of these advanced tools in crop microbiome studies. Here, we review (1) structure and composition of crop microbiome, (2) microbiome-mediated role associated with crops fitness, (3) Molecular and -omics techniques for exploration of crop microbiome, and (4) current approaches and future prospectives of crop microbiome and its exploitation for sustainable agriculture. Recent -omic approaches are influential tool for mapping, monitoring, modeling, and management of crops microbiome. Identification of crop microbiome, using system biology and rhizho-engineering, can help to develop future bioformulations for disease management, reclamation of stressed agro-ecosystems, and improved productivity of crops. Nano-system approaches combined with triggering molecules of crop microbiome can help in designing of nano-biofertilizers and nano-biopesticides. This combination has numerous merits over the traditional bioinoculants. They stimulate various defense mechanisms in plants facing stress conditions; provide bioavailability of nutrients in the soil, helps mitigate stress conditions; and enhance chances of crops establishment.


Subject(s)
Agriculture , Microbiota , Agriculture/methods , Crops, Agricultural , Soil/chemistry , Sustenance , Soil Microbiology
10.
Molecules ; 27(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35807259

ABSTRACT

Iron-deficiency-induced anemia is associated with poor neurological development, including decreased learning ability, altered motor functions, and numerous pathologies. Siderophores are iron chelators with low molecular weight secreted by microorganisms. The proposed catechol-type pathway was identified based on whole-genome sequences and bioinformatics tools. The intended pathway consists of five genes involved in the biosynthesis process. Therefore, the isolated catechol-type siderophore (Sid) from Streptomyces tricolor HM10 was evaluated through an anemia-induced rat model to study its potential to accelerate recovery from anemia. Rats were subjected to an iron-deficient diet (IDD) for 42 days. Anemic rats (ARs) were then divided into six groups, and normal rats (NRs) fed a standard diet (SD) were used as a positive control group. For the recovery experiment, ARs were treated as a group I; fed an IDD (AR), group II; fed an SD (AR + SD), group III, and IV, fed an SD with an intraperitoneal injection of 1 µg Sid Kg-1 (AR + SD + Sid1) and 5 µg Sid Kg-1 (AR + SD + Sid5) twice per week. Group V and VI were fed an iron-enriched diet (IED) with an intraperitoneal injection of 1 µg Sid Kg-1 (AR + IED + Sid1) and 5 µg Sid Kg-1 (AR + IED + Sid5) twice per week, respectively. Weight gain, food intake, food efficiency ratio, organ weight, liver iron concentration (LIC) and plasma (PIC), and hematological parameters were investigated. The results showed that ~50-60 mg Sid L-1 medium could be producible, providing ~25-30 mg L-1 purified Sid under optimal conditions. Remarkably, the AR group fed an SD with 5 µg Sid Kg-1 showed the highest weight gain. The highest feed efficiency was observed in the AR + SD + Sid5 group, which did not significantly differ from the SD group. Liver, kidneys, and spleen weight indicated that diet and Sid concentration were related to weight recovery in a dose-dependent manner. Liver iron concentration (LIC) in the AR + IED + Sid1 and AR + IED + Sid5 groups was considerably higher than in the AR + SD + Sid1 AR + SD + Sid5 groups or the AR + SD group compared to the AR group. All hematological parameters in the treated groups were significantly closely attenuated to SD groups after 28 days, confirming the efficiency of the anemia recovery treatments. Significant increases were obtained in the AR + SD + Sid5 and AR + IED + Sid5 groups on day 14 and day 28 compared to the values for the AR + SD + Sid1 and AR + IED + Sid1 groups. The transferrin saturation % (TSAT) and ferritin concentration (FC) were significantly increased with time progression in the treated groups associatively with PIC. In comparison, the highest significant increases were noticed in ARs fed IEDs with 5 µg Kg-1 Sid on days 14 and 28. In conclusion, this study indicated that Sid derived from S. tricolor HM10 could be a practical and feasible iron-nutritive fortifier when treating iron-deficiency-induced anemia (IDA). Further investigation focusing on its mechanism and kinetics is needed.


Subject(s)
Anemia, Iron-Deficiency , Anemia , Animals , Rats , Anemia/drug therapy , Anemia/etiology , Catechols , Iron/metabolism , Siderophores/pharmacology , Streptomyces , Weight Gain
11.
Plants (Basel) ; 11(7)2022 03 31.
Article in English | MEDLINE | ID: mdl-35406932

ABSTRACT

Water scarcity is a major environmental stress that adversatively impacts wheat growth, production, and quality. Furthermore, drought is predicted to be more frequent and severe as a result of climate change, particularly in arid regions. Hence, breeding for drought-tolerant and high-yielding wheat genotypes has become more decisive to sustain its production and ensure global food security with continuing population growth. The present study aimed at evaluating different parental bread wheat genotypes (exotic and local) and their hybrids under normal and drought stress conditions. Gene action controlling physiological, agronomic, and quality traits through half-diallel analysis was applied. The results showed that water-deficit stress substantially decreased chlorophyll content, photosynthetic efficiency (FV/Fm), relative water content, grain yield, and yield attributes. On the other hand, proline content, antioxidant enzyme activities (CAT, POD, and SOD), grain protein content, wet gluten content, and dry gluten content were significantly increased compared to well-watered conditions. The 36 evaluated genotypes were classified based on drought tolerance indices into 5 groups varying from highly drought-tolerant (group A) to highly drought-sensitive genotypes (group E). The parental genotypes P3 and P8 were identified as good combiners to increase chlorophyll b, total chlorophyll content, relative water content, grain yield, and yield components under water deficit conditions. Additionally, the cross combinations P2 × P4, P3 × P5, P3 × P8, and P6 × P7 were the most promising combinations to increase yield traits and multiple physiological parameters under water deficit conditions. Furthermore, P1, P2, and P5 were recognized as promising parents to improve grain protein content and wet and dry gluten contents under drought stress. In addition, the crosses P1 × P4, P2 × P3, P2 × P5, P2 × P6, P4 × P7, P5 × P7, P5 × P8, P6 × P8, and P7 × P8 were the best combinations to improve grain protein content under water-stressed and non-stressed conditions. Certain physiological traits displayed highly positive associations with grain yield and its contributing traits under drought stress such as chlorophyll a, chlorophyll b, total chlorophyll content, photosynthetic efficiency (Fv/Fm), proline content, and relative water content, which suggest their importance for indirect selection under water deficit conditions. Otherwise, grain protein content was negatively correlated with grain yield, indicating that selection for higher grain yield could reduce grain protein content under drought stress conditions.

12.
Plants (Basel) ; 11(5)2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35270172

ABSTRACT

Water deficit is a pivotal abiotic stress that detrimentally constrains rice growth and production. Thereupon, the development of high-yielding and drought-tolerant rice genotypes is imperative in order to sustain rice production and ensure global food security. The present study aimed to evaluate diverse exotic and local parental rice genotypes and their corresponding cross combinations under water-deficit versus well-watered conditions, determining general and specific combining ability effects, heterosis, and the gene action controlling important traits through half-diallel analysis. In addition, the research aimed to assess parental genetic distance (GD) employing simple sequence repeat (SSR) markers, and to determine its association with hybrid performance, heterosis, and specific combining ability (SCA) effects. Six diverse rice genotypes (exotic and local) and their 15 F1 hybrids were assessed for two years under water-deficit and well-watered conditions. The results revealed that water-deficit stress substantially declined days to heading, plant height, chlorophyll content, relative water content, grain yield, and yield attributes. Contrarily, leaf rolling and the sterility percentage were considerably increased compared to well-watered conditions. Genotypes differed significantly for all the studied characteristics under water-deficit and well-watered conditions. Both additive and non-additive gene actions were involved in governing the inheritance of all the studied traits; however, additive gene action was predominant for most traits. The parental genotypes P1 and P2 were identified as excellent combiners for earliness and the breeding of short stature genotypes. Moreover, P3, P4, and P6 were identified as excellent combiners to increase grain yield and its attributes under water-deficit conditions. The hybrid combinations; P1 × P4, P2 × P5, P3 × P4, and P4 × P6 were found to be good specific combiners for grain yield and its contributed traits under water-deficit conditions. The parental genetic distance (GD) ranged from 0.38 to 0.89, with an average of 0.70. It showed lower association with hybrid performance, heterosis, and combining ability effects for all the studied traits. Nevertheless, SCA revealed a significant association with hybrid performance and heterosis, which suggests that SCA is a good predictor for hybrid performance and heterosis under water-deficit conditions. Strong positive relationships were identified between grain yield and each of relative water content, chlorophyll content, number of panicles/plant, number of filled grains/panicle, and 1000-grain weight. This suggests that these traits could be exploited as important indirect selection criteria for improving rice grain yield under water-deficit conditions.

13.
Pol J Microbiol ; 70(2): 245-256, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34349814

ABSTRACT

Streptomyces is a genus with known biocontrol activity, producing a broad range of biologically active substances. Our goal was to isolate local Streptomyces species, evaluate their capacity to biocontrol the selected phytopathogens, and promote the plant growth via siderophore and indole acetic acid (IAA) production and phosphate solubilization. Eleven isolates were obtained from local soil samples in Saudi Arabia via the standard serial dilution method and identified morphologically by scanning electron microscope (SEM) and 16S rRNA amplicon sequencing. The biocontrol of phytopathogens was screened against known soil-borne fungi and bacteria. Plant growth promotion capacity was evaluated based on siderophore and IAA production and phosphate solubilization capacity. From eleven isolates obtained, one showed 99.77% homology with the type strain Streptomyces tricolor AS 4.1867, and was designated S. tricolor strain HM10. It showed aerial hyphae in SEM, growth inhibition of ten known phytopathogens in in vitro experiments, and the production of plant growth promoting compounds such as siderophores, IAA, and phosphate solubilization capacity. S. tricolor strain HM10 exhibited high antagonism against the fungi tested (i.e., Colletotrichum gloeosporides with an inhibition zone exceeding 18 mm), whereas the lowest antagonistic effect was against Alternaria solani (an inhibition zone equal to 8 mm). Furthermore, the most efficient siderophore production was recorded to strain HM8, followed by strain HM10 with 64 and 22.56 h/c (halo zone area/colony area), respectively. Concerning IAA production, Streptomyces strain HM10 was the most effective producer with a value of 273.02 µg/ml. An autochthonous strain S. tricolor HM10 should be an important biological agent to control phytopathogens and promote plant growth.


Subject(s)
Bacterial Physiological Phenomena , Fungi/physiology , Microbial Interactions/physiology , Plants/microbiology , Streptomyces/genetics , Streptomyces/metabolism , Bacteria/genetics , Saudi Arabia , Streptomyces/classification , Streptomyces/isolation & purification
14.
Sci Rep ; 11(1): 14539, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34267232

ABSTRACT

Streptomyces smyrnaeus UKAQ_23, isolated from the mangrove-sediment, collected from Jubail,Saudi Arabia, exhibited substantial antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA), including non-MRSA Gram-positive test bacteria. The novel isolate, under laboratory-scale conditions, produced the highest yield (561.3 ± 0.3 mg/kg fermented agar) of antimicrobial compounds in modified ISP-4 agar at pH 6.5, temperature 35 °C, inoculum 5% v/w, agar 1.5% w/v, and an incubation period of 7 days. The two major compounds, K1 and K2, were isolated from fermented medium and identified as Actinomycin X2 and Actinomycin D, respectively, based on their structural analysis. The antimicrobial screening showed that Actinomycin X2 had the highest antimicrobial activity compared to Actinomycin D, and the actinomycins-mixture (X2:D, 1:1, w/w) against MRSA and non-MRSA Gram-positive test bacteria, at 5 µg/disc concentrations. The MIC of Actinomycin X2 ranged from 1.56-12.5 µg/ml for non-MRSA and 3.125-12.5 µg/ml for MRSA test bacteria. An in-silico molecular docking demonstrated isoleucyl tRNA synthetase as the most-favored antimicrobial protein target for both actinomycins, X2 and D, while the penicillin-binding protein-1a, was the least-favorable target-protein. In conclusion, Streptomyces smyrnaeus UKAQ_23 emerged as a promising source of Actinomycin X2 with the potential to be scaled up for industrial production, which could benefit the pharmaceutical industry.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Dactinomycin/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Streptomyces/metabolism , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/metabolism , Computer Simulation , Culture Media/chemistry , Dactinomycin/isolation & purification , Dactinomycin/metabolism , Drug Evaluation, Preclinical/methods , Fermentation , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Docking Simulation , Molecular Structure , Phylogeny , Streptomyces/genetics
15.
Plants (Basel) ; 9(9)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899300

ABSTRACT

Knowledge of combining ability and genetic diversity are important prerequisites for the development of outstanding hybrids that are tolerant to high plant density. This work was carried out to assess general combining ability (GCA) and specific combining ability (SCA), identify promising hybrids, estimate genetic diversity among the inbred lines and correlate genetic distance to hybrid performance and SCA across different plant densities. A total of 28 F1 hybrids obtained by crossing eight adverse inbred lines (four local and four exotic) were evaluated under three plant densities 59,500 (D1), 71,400 (D2) and 83,300 (D3) plants ha-1 using spilt plot design with three replications at two locations during 2018 season. Increasing plant density from D1 to D3 significantly decreased leaf angle (LANG), chlorophyll content (CHLC), all ear characteristics and grain yield per plant (GYPP). Contrarily, days to silking (DTS), anthesis-silking interval (ASI), plant height (PLHT), ear height (EHT), and grain yield per hectare (GYPH) were significantly increased. Both additive and non-additive gene actions were involved in the inheritance of all the evaluated traits, but additive gene action was predominant for most traits. Inbred lines L1, L2, and L5 were the best general combiners for increasing grain yield and other desirable traits across research environments. Two hybrids L2 × L5 and L2 × L8 were found to be good specific combiners for ASI, LANG, GYPP and GYPH. Furthermore, these hybrids are ideal for further testing and promotion for commercialization under high plant density. Genetic distance (GD) among pairs of inbred lines ranged from 0.31 to 0.78, with an average of 0.61. Clustering based on molecular GD has effectively grouped the inbred lines according to their origin. No significant correlation was found between GD and both hybrid performance and SCA for grain yield and other traits and proved to be of no predictive value. Nevertheless, SCA could be used to predict the hybrid performance across all plant densities. Overall, this work presents useful information regarding the inheritance of maize grain yield and other important traits under high plant density.

16.
Antonie Van Leeuwenhoek ; 112(1): 127-139, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30421099

ABSTRACT

Four Frankia strains (EuI1c, CN3, ACN14a and CcI3) were tested for selenite tolerance. Frankia inefficax strain EuI1c was resistant to selenite with a MIC value of 518.8 µg ml-1. After 48 h incubation with selenite, a reddish precipitate began to appear in these cultures. The red color suggests the reduction of the toxic, soluble, and colorless sodium selenite (Na2SeO32-) to the nontoxic, insoluble, and red colored elemental selenium (Seº). Analysis showed F. inefficax strain EuI1c cultures exposed to 17.3 and 86.5 µg ml-1selenite completely reduced all of the selenite after 5 and 8 days, respectively. When observed under Scanning Electron Microscopy, selenite-resistant F. inefficax strain EuI1c grown with selenite formed nanosphere particles on the hyphal surface as free deposits or in aggregates and inside the hyphae. EDAX analysis of the nanosphere particles determined that they are composed of selenium with up to 27.3-fold increase in intensity as compared to control cells. FTIR Spectroscopy of selenite-stressed cells showed cell surface changes in fatty acids, polysaccharides, carbohydrates and phosphate groups. This result suggests a mechanism for selenite reduction and nanosphere transport through cell membrane in this strain. Native gel electrophoresis of extracted cell-free protein revealed one band showing activity after staining with selenite and NADH. SDS-PAGE analysis revealed the presence of several bands with one dominant band of 37.8 kDa. Mass spectrometry analysis of the bands determined that the main proteins were a periplasmic-binding protein, sulfate ABC transporter and extracellular ligand-binding receptor.


Subject(s)
Frankia/metabolism , Selenious Acid/metabolism , Selenium/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biotransformation , Color , Frankia/genetics , Oxidation-Reduction
17.
Microbiology (Reading) ; 163(4): 472-487, 2017 04.
Article in English | MEDLINE | ID: mdl-28141503

ABSTRACT

Several Frankia strains have been shown to be lead-resistant. The mechanism of lead resistance was investigated for Frankia sp. strain EAN1pec. Analysis of the cultures by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX) and Fourier transforming infrared spectroscopy (FTIR) demonstrated that Frankia sp. strain EAN1pec undergoes surface modifications and binds high quantities of Pb+2. Both labelled and unlabelled shotgun proteomics approaches were used to determine changes in Frankia sp. strain EAN1pec protein expression in response to lead and zinc. Pb2+ specifically induced changes in exopolysaccharides, the stringent response, and the phosphate (pho) regulon. Two metal transporters (a Cu2+-ATPase and cation diffusion facilitator), as well as several hypothetical transporters, were also upregulated and may be involved in metal export. The exported Pb2+ may be precipitated at the cell surface by an upregulated polyphosphate kinase, undecaprenyl diphosphate synthase and inorganic diphosphatase. A variety of metal chaperones for ensuring correct cofactor placement were also upregulated with both Pb+2 and Zn+2 stress. Thus, this Pb+2 resistance mechanism is similar to other characterized systems. The cumulative interplay of these many mechanisms may explain the extraordinary resilience of Frankia sp. strain EAN1pec to Pb+2. A potential transcription factor (DUF156) binding site was identified in association with several proteins identified as upregulated with heavy metals. This site was also discovered, for the first time, in thousands of other organisms across two kingdoms.


Subject(s)
Frankia/drug effects , Frankia/metabolism , Lead/pharmacology , Membrane Transport Proteins/metabolism , Polysaccharides, Bacterial/metabolism , Zinc/pharmacology , Adenosine Triphosphatases/metabolism , Alkyl and Aryl Transferases/metabolism , Biological Transport/physiology , Frankia/growth & development , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared
18.
Appl Microbiol Biotechnol ; 98(18): 8005-15, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24903815

ABSTRACT

Several Frankia strains have been shown to be copper-tolerant. The mechanism of their copper tolerance was investigated for Frankia sp. strain EuI1c. Copper binding was shown by binding studies. Unusual globular structures were observed on the surface of the bacterium. These globular structures were composed of aggregates containing many relatively smaller "leaf-like" structures. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDAX) analysis of these structures indicated elevated copper and phosphate levels compared to the control cells. Fourier transform infrared spectroscopy (FTIR) analysis indicated an increase in extracellular phosphate on the cell surface of copper-stressed cells. Bioinformatics' analysis of the Frankia sp. strain EuI1c genome revealed five potential cop genes: copA, copZ, copC, copCD, and copD. Experiments with Frankia sp. strain EuI1c using qRT-PCR indicated an increase in messenger RNA (mRNA) levels of the five cop genes upon Cu(2+) stress. After 5 days of Cu(2+) stress, the copA, copZ, copC, copCD, and copD mRNA levels increased 25-, 8-, 18-, 18-, and 25-fold, respectively. The protein profile of Cu(2+)-stressed Frankia sp. strain EuI1c cells revealed the upregulation of a 36.7 kDa protein that was identified as FraEuI1c_1092 (sulfate-binding periplasmic transport protein). Homologues of this gene were only present in the genomes of the Cu(2+)-resistant Frankia strains (EuI1c, DC12, and CN3). These data indicate that copper tolerance by Frankia sp. strain EuI1c involved the binding of copper to the cell surface and transport proteins.


Subject(s)
Bacterial Proteins/metabolism , Copper/metabolism , Frankia/metabolism , Bacterial Proteins/genetics , Frankia/genetics , Gene Expression Regulation, Bacterial
19.
Appl Microbiol Biotechnol ; 98(13): 6125-35, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24676750

ABSTRACT

Atrazine is transformed to N-isopropylammelide through hydroxyatrazine as an intermediate as indicated by high-performance liquid chromatography/mass spectroscopy in culture filtrates of Frankia alni ACN14a and Frankia sp. EuI1c. Both Frankia strains have the ability to degrade atrazine via dechlorination and dealkylation and, subsequently, may be using it as a nitrogen and carbon source as detected here by increasing their growth patterns. Bioinformatic analysis of the Frankia genomes revealed that a potential gene cluster involved in atrazine decomposition contains three genes, namely, trzN (FRAAL1474 and FraEuI1c_5874), atzB (FRAAL1473 and FraEuI1c_5875), and atzR (FRAAL1471). The relative messenger RNA gene expression of the former genes was examined by qRT-PCR. The LysR-type transcriptional regulator atzR (FRAAL1471), which is expected to control the cluster expression, showed a 13-fold increase in the expression level under atrazine stress. Moreover, the putative adenosine aminohydrolase 3 atzB (FRAAL1473), which is expected to dealkylate the N-ethyl group of atrazine, showed also an increased expression by factor 16 with increased exposure. Eventually, the trzN (FRAAL1474) gene, which is predicted to encode a putative amidohydrolase catalyzing atrazine dechlorination, exhibited 31-fold increased expression. To our best knowledge, this is the first report about adenosine aminohydrolase 3 function in the dealkylation of the N-ethyl group from atrazine.


Subject(s)
Atrazine/metabolism , Frankia/metabolism , Gene Expression Regulation, Bacterial , Biotransformation , Carbon/metabolism , Chlorine/metabolism , Chromatography, High Pressure Liquid , Computational Biology , Dealkylation , Frankia/genetics , Frankia/growth & development , Gene Expression Profiling , Mass Spectrometry , Multigene Family , Nitrogen/metabolism , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...