Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(14): 15904-15914, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617699

ABSTRACT

Montmorillonite clay and agar are naturally occurring materials of significant importance in designing biocompatible materials tailored for applications in biotechnology and medicine. The introduction of magnetic properties has the potential to significantly boost their characteristics and expand their applications. In this study, we have successfully synthesized highly intercalated magnetic composites, incorporating magnetic iron oxide nanoparticles (MNPs), montmorillonite clay (MMT), and agar (AG), through a thermo-physicomechanical method. Three samples of MMT-AG with 2, 1.5, and 0.5% MNPs and three sample composites of MNPs-AG with 2, 1, and 0.5% MMT clay are prepared. The synthesized composites were characterized by SEM, XRD, TGA, DTA, and FTIR. SEM analysis revealed a uniform dispersion of MNPs and MMT in the composite. The XRD pattern confirmed the presence of MNPs in the composite site. The TGA and DTA results demonstrated improved thermal stability due to the MNP incorporation. FTIR spectra showed all of the constituents of agar, MNPs, and MMT clay. The swelling ratio was observed to range from 835% to 1739%. The swelling study indicated an increased hydrophobicity with the addition of MNPs to the composite. Antibacterial activities revealed a significant inhibition of Escherichia coli (E. coli) growth by ranging from 10 to 19 nm in the composite. The composite also exhibited a considerable antioxidant action, with IC50 values of 7.96, 46.55, and 57.58 µg/mL, and electrical properties just like conductors.

2.
Toxics ; 11(10)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37888715

ABSTRACT

Benzene, a potent carcinogen, is known to cause acute myeloid leukaemia. While chemotherapy is commonly used for cancer treatment, its side effects have prompted scientists to explore natural products that can mitigate the haematotoxic effects induced by chemicals. One area of interest is nano-theragnostics, which aims to enhance the therapeutic potential of natural products. This study aimed to enhance the effects of methanolic extracts from Ocimum basilicum, Rosemarinus officinalis, and Thymus vulgaris by loading them onto silica nanobeads (SNBs) for targeted delivery to mitigate the benzene-induced haematotoxic effects. The SNBs, 48 nm in diameter, were prepared using a chemical method and were then loaded with the plant extracts. The plant-extract-loaded SNBs were then coated with carboxymethyl cellulose (CMC). The modified SNBs were characterized using various techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The developed plant-extract-loaded and CMC-modified SNBs were administered intravenously to benzene-exposed rats, and haematological and histopathological profiling was conducted. Rats exposed to benzene showed increased liver and spleen weight, which was mitigated by the plant-extract-loaded SNBs. The differential white blood cell (WBC) count was higher in rats with benzene-induced haematotoxicity, but this count decreased significantly in rats treated with plant-extract-loaded SNBs. Additionally, blast cells observed in benzene-exposed rats were not found in rats treated with plant-extract-loaded SNBs. The SNBs facilitated targeted drug delivery of the three selected medicinal herbs at low doses. These results suggest that SNBs have promising potential as targeted drug delivery agents to mitigate haematotoxic effects induced by benzene in rats.

3.
Biomed Res Int ; 2022: 8902262, 2022.
Article in English | MEDLINE | ID: mdl-36193329

ABSTRACT

A new mechanistic approach to overcome the neurodegenerative disorders caused by oxidative stress in Alzheimer's disease (AD) is highly stressed in this article. Thus, a newly formulated drug (zinc ortho-methyl carbonodithioate (ZOMEC)) was investigated for five weeks on seven-week-old BALB/c male mice. ZOMEC 30 mg/kg was postadministered intraperitoneally during the third week of pentylenetetrazole (PTZ) injection. The brain homogenates of the mice were evaluated for their antioxidant potential for ZOMEC. The results including catalase (CAT), glutathione S transferase (GST), and lipid peroxidation (LPO) demonstrated that ZOMEC significantly reverted the oxidative stress stimulated by PTZ in the mouse brain. ZOMEC upregulated p-Akt/Nrf-2 pathways (also supported by molecular docking methods) to revoke PTZ-induced apoptotic protein markers. ZOMEC reversed PTZ-induced neuronal synapse deficits, improved oxidative stress-aided memory impairment, and inhibited the amyloidogenic pathway in mouse brains. The results suggested the potential of ZOMEC as a new, safe, and neurotherapeutic agent to cure neurodegenerative disorders by decreasing AD-like neuropathology in the animal PTZ model.


Subject(s)
Alzheimer Disease , Pentylenetetrazole , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Catalase/metabolism , Disease Models, Animal , Glutathione Transferase/metabolism , Male , Mice , Molecular Docking Simulation , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Pentylenetetrazole/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Zinc
4.
Polymers (Basel) ; 14(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35808726

ABSTRACT

There has been very limited work on the control loading and release of the drugs aprepitant and sofosbuvir. These drugs need a significant material for the control of their loading and release phenomenon that can supply the drug at its target site. Magnetic nanoparticles have characteristics that enable them to be applied in biomedical fields and, more specifically, as a drug delivery system when they are incorporated with a biocompatible polymer. The coating with magnetic nanoparticles is performed to increase efficiency and reduce side effects. In this regard, attempts are made to search for suitable materials retaining biocompatibility and magnetic behavior. In the present study, silica-coated iron oxide nanoparticles were incorporated with core-shell particles made of poly(2-acrylamido-2-methylpropane sulfonic acid)@butyl methacrylate to produce a magnetic composite material (MCM-PA@B) through the free radical polymerization method. The as-prepared composite materials were characterized through Fourier-transform infrared (FTIR)spectroscopy, scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), energy-dispersive X-Ray Analysis (EDX), and thermogravimetric analysis (TGA), and were further investigated for the loading and release of the drugs aprepitant and sofosbuvir. The maximum loading capacity of 305.76 mg/g for aprepitant and 307 mg/g for sofosbuvir was obtained at pH 4. Various adsorption kinetic models and isotherms were applied on the loading of both drugs. From all of the results obtained, it was found that MCM-PA@B can retain the drug for more than 24 h and release it slowly, due to which it can be applied for the controlled loading and targeted release of the drugs.

5.
Curr Pharm Des ; 28(5): 352-367, 2022.
Article in English | MEDLINE | ID: mdl-34514984

ABSTRACT

Polyethylene glycols (PEG) are water-soluble non-ionic polymeric molecules. PEG and PEG-based materials are used for various important applications, such as solvents, adhesives, adsorbents, drug delivery agents, tissue engineering scaffolds, etc. The coating of nanoparticles with PEG forms core-shell nanoparticles. The PEG-based core-shell nanoparticles are synthesized for the development of high-quality drug delivery systems. In the present review, we first explained the basics and various applications of PEGs and PEG-based composites materials and then concentrated on the PEG-based core-shell nanoparticles for biomedical applications, specifically their use in drug delivery.


Subject(s)
Nanoparticles , Polyethylene Glycols , Drug Delivery Systems , Humans , Polymers , Tissue Scaffolds
6.
RSC Adv ; 11(13): 7187-7204, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-35423256

ABSTRACT

Magnetic materials have brought innovations in the field of advanced materials. Their incorporation in aerogels has certainly broadened their application area. Magnetic aerogels can be used for various purposes from adsorbents to developing electromagnetic interference shielding and microwave absorbing materials, high-level diagnostic tools, therapeutic systems, and so on. Considering the final use and cost, these can be fabricated from a variety of materials using different approaches. To date, several studies have been published reporting the fabrication and uses of magnetic aerogels. However, to our knowledge, there is no review that specifically focuses only on magnetic aerogels, so we attempted to overview the main developments in this field and ended our study with the conclusion that magnetic aerogels are one of the emerging and futuristic advanced materials with the potential to offer multiple applications of high value.

7.
Curr Pharm Des ; 25(34): 3681-3691, 2019.
Article in English | MEDLINE | ID: mdl-31604407

ABSTRACT

PURPOSE: Leukemia, one of the major cancers, affects a large proportion of people around the world. Better treatment options for leukemia are required due to a large number of side effects associated with current therapeutic regimens. In the present study, we sought to determine the pathway of triggering apoptosis of leukemic cells by Ocimum basilicum (O. basilicum) plant extract. MATERIALS/METHODS: Methanolic extract of the O. basilicum plant material was prepared. The crude extract was fractionated into several fractions through column chromatography using ethyl acetate and n-hexane as eluting solvents. Cell viability of leukemic cells was assessed via Cell titer GLO assay and apoptosis was measured through Annexin V/PI staining. Two apoptotic molecules JNK and caspases were analyzed through western blotting while pro-inflammatory cytokines TNFα, CCL2 and CXCL8 using qPCR. Fractions were characterized through LC-MS. RESULTS: The most potent with lowest IC50 values among the fractions were BF2 (2:8 n-hexane:ethyl acetate) and BF3 (3:7 n-hexane:ethyl acetate). Cytotoxicity was associated with apoptosis. Apoptosis was found caspasedependent and P-JNK activation was detected sustained. A significant increase in the level of TNF α and a decrease in the level of CXCL8 were observed in BF2 and BF3 treated cells. CONCLUSION: The fractions of O. basilicum extract were found to kill cells following JNK pathway activation. Excellent results were obtained with BF2 and BF3 probably due to predominant Epicatechin and Cinnamic acid derivatives in these fractions.


Subject(s)
Apoptosis , Caspase 3 , Leukemia , MAP Kinase Signaling System , Ocimum basilicum/chemistry , Plant Extracts/pharmacology , Cell Line, Tumor , Humans , Tumor Necrosis Factor-alpha
8.
Curr Pharm Des ; 25(34): 3672-3680, 2019.
Article in English | MEDLINE | ID: mdl-31604415

ABSTRACT

PURPOSE: The purpose of the present study was to make a biocompatible agar based composite material via incorporation of appropriate additives within the agar matrix for potential applications in drug delivery and biomedical fields. METHODOLOGY: Agar based composites were prepared by the incorporation of magnetic iron oxide nano particles, graphite and sodium aluminum as additives in different proportions within the agar matrix by a simple thermophysico- mechanical method. The as prepared agar based composites were then characterized by different techniques i.e. FTIR, SEM, TGA, XRD and EDX analyses. The FTIR peaks confirmed the presence of each component in the agar composite. SEM images showed the uniform distribution of each component in the agar composite. TGA study showed the thermal stability range of different composite sheets. XRD pattern revealed the crystallinity and EDX analysis confirmed the elemental composition of the prepared composites. The prepared agar based composites were evaluated for antimicrobial activities against three pathogenic bacterial strains Escherichia coli, Staphylococcus aureus and Klebsiella pneumonia and the result indicated efficient antimicrobial activities for all composites. CONCLUSION: From the overall study, it was concluded that due to the non-toxic nature, thermal stability and excellent antibacterial properties, the prepared agar based composites can receive potential biomedical applications.


Subject(s)
Agar/chemistry , Drug Delivery Systems , Nanocomposites/chemistry , Anti-Bacterial Agents , Ferric Compounds , Magnetic Phenomena , Metal Nanoparticles
9.
Recent Pat Nanotechnol ; 10(3): 202-212, 2016.
Article in English | MEDLINE | ID: mdl-27784257

ABSTRACT

Affordable and efficient water treatment process to produce water free from various contaminants is a big challenge. The presence of toxic heavy metals, dyes, hazardous chemicals and other toxins causes contamination of water sources and our food chain and make them hazardous to living organisms. The current water treatment processes are no longer sustainable due to high cost and low efficiency. Due to advantageous properties, nanotechnology based materials can play a great role in increasing the efficiency of water treatment processes. Magnetic nanocomposites use nano as well as magnetic properties and have the potential to provide a sophisticated system to overcome most of the impurities present in water. There is a diversity of magnetic nanocomposites, however presently we have focussed the core-shell magnetic nanocomposites because they have excellent magnetic and separation properties, stability, and good biocompatibility. METHODS: We collected systematically the bibliographic data bases for peer-reviewed research literature focusing on the theme of our review. The quality of the included research papers are selected by standard tools. A conceptual frame work is designed to arrange the topics and extracted the interventions and findings of the included studies. RESULTS: The overall study was divided into sections and each section incorporated the most appropriate literature citation. Total one hundred and eight references were included of which 32 references were used for basic description/introduction of core-shell magnetic nanocomposites. One review paper containing the synthesis methods for core shell magnetic nanocomposites is included while majority (76) of the references are included for comprehensive description of applications of the core-shell nanocomposites among which 25 were for dyes removal, 27 for hazardous metals, 07 for hazardous chemicals, 12 for pesticides and biological contaminants removal and five other including patents were added as miscellaneous substances removal from water sources. This review identified the effective role of core-shell magnetic nanocomposites for environmental remediation in terms of removal of various hazardous substances from water resources. CONCLUSION: The outcome of the present review confirms that the magnetic core-shell nanocomposites provide a cost effective and efficient way for the removal of various toxic substances including dyes, heavy metals, toxic organic chemicals, pesticides and some biological contaminants from water sources.


Subject(s)
Magnetics , Nanocomposites/chemistry , Wastewater , Water Purification/methods , Metals, Heavy , Patents as Topic , Water Pollution
10.
Article in English | MEDLINE | ID: mdl-27136928

ABSTRACT

BACKGROUND: Affordable and efficient water treatment process to produce water free from various contaminants is a big challenge. The presence of toxic heavy metals, dyes, hazardous chemicals and other toxins cause contamination of water sources and our food chain and make them hazardous to living organisms. The current water treatment processes are no longer sustainable due to high cost and low efficiency. Due to advantageous properties, nanotechnology based materials can play a great role in increasing the efficiency of water treatment processes. Magnetic nanocomposites use nano as well as magnetic properties and have the potential to provide a sophisticated system to overcome most of the impurities present in water. There is diversity of magnetic nanocomposites, however presently we have focussed the core-shell magnetic nanocomposites because they have excellent magnetic and separation properties, stability, and good biocompatibility. METHODS: We collected systematically the bibliographic data bases for peer-reviewed research literature focusing on the theme of our review. The Quality of the included research papers are selected by standard tools. A conceptual frame work is designed to arrange the topics and extracted the interventions and findings of the included studies. RESULTS: The overall study was divided in sections and each section incorporated the most appropriate literature citation. Total one hundred and eight references were included of which 32 references were used for basic description/introduction of core-shell magnetic nanocomposites. One review paper containing the synthesis methods for core shell magnetic nanocomposites is included while majority (76) of the references are included for comprehensive description of applications of the core-shell nanocomposites among which 25 were for dyes removal, 27 for hazardous metals, 07 for hazardous chemicals, 12 for pesticides and biological contaminants removal and five other including patents were added as miscellaneous substances removal from water sources. This review identified the effective role of core-shell magnetic nanocomposites for environmental remediation in terms of removal of various hazardous substances from water resources. CONCLUSION: The outcomes of the present review confirms that the magnetic core-shell nanocomposites provide a cost effective and efficient way for the removal of various toxic substances including dyes, heavy metals, toxic organic chemicals, pesticides and some biological contaminants from water sources.

SELECTION OF CITATIONS
SEARCH DETAIL
...