Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters











Publication year range
1.
Chembiochem ; : e202400451, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39143861

ABSTRACT

The study of the interactions between biofunctionalized gold nanoclusters (Au NCs) and spermatozoa is highly relevant to evaluate the potential of Au NCs as imaging probes and transfection agents in the reproductive biology. In this work, confocal laser scanning microscopy (CLSM) was used to investigate the distribution of Au NCs bioconjugated with peptide (nuclear localisation sequence, NLS) and oligonucleotide (locked nucleic acid, LNA) ligands in bovine spermatozoa. Fluorescence lifetime imaging (FLIM) was employed to detect changes in the NC´s chemical environment. We observed a pronounced regio-selective accumulation of the bioconjugates in spermatozoa with high concentration at the equatorial segment. Furthermore, 3D-CLSM showed successful non-endosomal cellular uptake of the conjugates by intact sperm cells and the distribution of the bioconjugates was found to be influenced by the ligand types. Interestingly, the FLIM data showed differences in lifetime depending on membrane integrity. Furthermore, ligand-dependent changes in lifetime between NC bioconjugates carrying peptide and oligonucleotide ligands were found, probably attributed to specific interactions with sperm cell compartments.

2.
Chemphyschem ; 25(17): e202300623, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38842467

ABSTRACT

Platinum-based neural electrodes, frequently alloyed with Ir or W, are routinely used to treat neurological disorders. However, their performance is impaired by an increase in impedance that compromises long-term implant functionality. Though there are multiple coating techniques available to address this issue, electrode, and base material often exhibit a compositional mismatch, which impairs mechanical stability and may lead to toxicological side effects. In this work, we coated Pt wire electrodes with ligand-free electrostatically stabilized colloidal Pt90Ir10, Pt90W10, and Pt50W50 alloy nanoparticles (NPs) matching electrode compositions using electrophoretic deposition (EPD) with direct-current (DC) and pulsed-DC fields in aqueous medium. The generated alloy NPs exhibit a solid solution structure as evidenced by HR-TEM-EDX and XRD, though additional WOx phases were identified in the Pt50W50 samples. Consequently, coating efficiency was also impaired in the presence of high W mass fractions in the alloy NPs. Characterization of the NP coatings by cyclic voltammetry and impedance spectroscopy yielded a significant reduction of the impedance in the Pt90Ir10 sample in comparison to the control coated with Pt NPs. The electrochemical surface area (ECSA) of the PtW alloy coatings, on the other hand, was significantly reduced.

3.
Sci Rep ; 14(1): 3405, 2024 02 10.
Article in English | MEDLINE | ID: mdl-38336925

ABSTRACT

Staphylococcus aureus biofilm-associated infections are a common complication in modern medicine. Due to inherent resilience of biofilms to antibiotics and the rising number of antibiotic-resistant bacterial strains, new treatment options are required. For this purpose, ultrapure, spherical silver-gold-alloy nanoparticles with homogenous elemental distribution were synthesized by laser ablation in liquids and analyzed for their antibacterial activity on different stages of S. aureus biofilm formation as well as for different viability parameters. First, the effect of nanoparticles against planktonic bacteria was tested with metabolic activity measurements. Next, nanoparticles were incubated with differently matured S. aureus biofilms, which were then analyzed by metabolic activity measurements and three dimensional live/dead fluorescent staining to determine biofilm volume and membrane integrity. It could be shown that AgAu NPs exhibit antibacterial properties against planktonic bacteria but also against early-stage and even mature biofilms, with a complete diffusion through the biofilm matrix. Furthermore, AgAu NPs primarily targeted metabolic activity, to a smaller extend membrane integrity, but not the biofilm volume. Additional molecular analyses using qRT-PCR confirmed the influence on different metabolic pathways, like glycolysis, stress response and biofilm formation. As this shows clear similarities to the mechanism of pure silver ions, the results strengthen silver ions to be the major antibacterial agent of the synthesized nanoparticles. In summary, the results of this study provide initial evidence of promising anti-biofilm characteristics of silver-gold-alloy nanoparticles and support the importance of further translation-oriented analyses in the future.


Subject(s)
Metal Nanoparticles , Staphylococcal Infections , Humans , Staphylococcus aureus/physiology , Silver/pharmacology , Anti-Bacterial Agents/pharmacology , Biofilms , Staphylococcal Infections/microbiology , Plankton , Lasers , Gold/pharmacology , Ions , Alloys , Microbial Sensitivity Tests
4.
Adv Healthc Mater ; 12(30): e2302084, 2023 12.
Article in English | MEDLINE | ID: mdl-37661312

ABSTRACT

The bactericidal effects of silver nanoparticles (Ag NPs) against infectious strains of multiresistant bacteria is a well-studied phenomenon, highly relevant for many researchers and clinicians battling bacterial infections. However, little is known about the uptake of the Ag NPs into the bacteria, the related uptake mechanisms, and how they are connected to antimicrobial activity. Even less information is available on AgAu alloy NPs uptake. In this work, the interactions between colloidal silver-gold alloy nanoparticles (AgAu NPs) and Staphylococcus aureus (S. aureus) using advanced electron microscopy methods are studied. The localization of the nanoparticles is monitored on the membrane and inside the bacterial cells and the elemental compositions of intra- and extracellular nanoparticle species. The findings reveal the formation of pure silver nanoparticles with diameters smaller than 10 nm inside the bacteria, even though those particles are not present in the original colloid. This finding is explained by a local RElease PEnetration Reduction (REPER) mechanism of silver cations emitted from the AgAu nanoparticles, emphasized by the localization of the AgAu nanoparticles on the bacterial membrane by aptamer targeting ligands. These findings can deepen the understanding of the antimicrobial effect of nanosilver, where the microbes are defusing the attacking silver ions via their reduction, and aid in the development of suitable therapeutic approaches.


Subject(s)
Gold Alloys , Metal Nanoparticles , Gold Alloys/pharmacology , Silver/pharmacology , Staphylococcus aureus , Alloys/pharmacology , Gold/pharmacology , Bacteria , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
5.
Chemistry ; 29(50): e202301260, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37334753

ABSTRACT

Gold nanoparticles (AuNPs) are currently the most studied radiosensitizers in proton therapy (PT) applicable for the treatment of solid tumors, where they amplify production of reactive oxygen species (ROS). However, it is underexplored how this amplification is correlated with the AuNPs' surface chemistry. To clarify this issue, we fabricated ligand-free AuNPs of different mean diameters by laser ablation in liquids (LAL) and laser fragmentation in liquids (LFL) and irradiated them with clinically relevant proton fields by using water phantoms. ROS generation was monitored by the fluorescent dye 7-OH-coumarin. Our findings reveal an enhancement of ROS production driven by I) increased total particle surface area, II) utilization of ligand-free AuNPs avoiding sodium citrate as a radical quencher ligands, and III) a higher density of structural defects generated by LFL synthesis, indicated by surface charge density. Based on these findings it may be concluded that the surface chemistry is a major and underexplored contributor to ROS generation and sensitizing effects of AuNPs in PT. We further highlight the applicability of AuNPs in vitro in human medulloblastoma cells.


Subject(s)
Metal Nanoparticles , Proton Therapy , Radiation-Sensitizing Agents , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Reactive Oxygen Species
6.
Faraday Discuss ; 242(0): 301-325, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36222171

ABSTRACT

Catalytic activity and toxicity of mixed-metal nanoparticles have been shown to correlate and are known to be dependent on surface composition. The surface chemistry of the fully inorganic, ligand-free silver-gold alloy nanoparticle molar fraction series, is highly interesting for applications in heterogeneous catalysis, which is determined by active surface sites which are also relevant for understanding their dissolution behavior in biomedically-relevant ion-release scenarios. However, such information has never been systematically obtained for colloidal nanoparticles without organic surface ligands and has to date, not been analyzed in a surface-normalized manner to exclude density effects. For this, we used detailed electrochemical measurements based on cyclic voltammetry to systematically analyze the redox chemistry of particle-surface-normalized gold-silver alloy nanoparticles with varying gold molar fractions. The study addressed a broad range of gold molar fractions (Ag90Au10, Ag80Au20, Ag70Au30, Ag50Au50, Ag40Au60, and Ag20Au80) as well as monometallic Ag and Au nanoparticle controls. Oxygen reduction reaction (ORR) measurements in O2 saturated 0.1 M KOH revealed a linear reduction of the overpotential with increasing gold content on the surface, probably attributed to the higher ORR activity of gold over silver, verified by monometallic Ag and Au controls. These findings were complemented by detailed XPS studies revealing an accumulation of the minor constituent of the alloy on the surface, e.g., silver surface enrichment in gold-rich particles. Furthermore, highly oxidized Ag surface site enrichment was detected after the ORR reaction, most pronounced in gold-rich alloys. Further, detailed CV studies at acidic pH, analyzing the position, onset potential, and peak integrals of silver oxidation and silver reduction peaks revealed particularly low reactivity and high chemical stability of the equimolar Au50Ag50 composition, a phenomenon attributed to the outstanding thermodynamic, entropically driven, stabilization arising at this composition.

7.
Langmuir ; 38(43): 13030-13047, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36260482

ABSTRACT

Sterilization is a major prerequisite for the utilization of nanoparticle colloids in biomedicine, a process well examined for particles derived from chemical synthesis although highly underexplored for electrostatically stabilized ligand-free gold nanoparticles (AuNPs). Hence, in this work, we comprehensively examined and compared the physicochemical characteristics of laser-generated ligand-free colloidal AuNPs exposed to steam sterilization and sterile filtration as a function of particle size and mass concentration and obtained physicochemical insight into particle growth processes. These particles exhibit long-term colloidal stability (up to 3 months) derived from electrostatic stabilization without using any ligands or surfactants. We show that particle growth attributed to cluster-based ripening occurs in smaller AuNPs (∼5 nm) following autoclaving, while larger particles (∼10 and ∼30 nm) remain stable. Sterile filtration, as an alternative effective sterilizing approach, has no substantial impact on the colloidal stability of AuNPs, regardless of particle size, although a mass loss of 5-10% is observed. Finally, we evaluated the impact of the sterilization procedures on potential particle functionality in proton therapy, using the formation of reactive oxygen species (ROS) as a readout. In particular, 5 nm AuNPs exhibit a significant loss in activity upon autoclaving, probably dedicated to specific surface area reduction and surface restructuring during particle growth. The filtered analog enhanced the ROS release by up to a factor of ∼2.0, at 30 ppm gold concentration. Our findings highlight the need for carefully adapting the sterilization procedure of ligand-free NPs to the desired biomedical application with special emphasis on particle size and concentration.


Subject(s)
Gold , Metal Nanoparticles , Reactive Oxygen Species , Particle Size , Ligands , Sterilization
8.
Adv Healthc Mater ; 11(23): e2102637, 2022 12.
Article in English | MEDLINE | ID: mdl-36148583

ABSTRACT

The mechanical stability of implant coatings is crucial for medical approval and transfer to clinical applications. Here, electrophoretic deposition (EPD) is a versatile coating technique, previously shown to cause significant post-surgery impedance reduction of brain stimulation platinum electrodes. However, the mechanical stability of the resulting coating has been rarely systematically investigated. In this work, pulsed-DC EPD of laser-generated platinum nanoparticles (PtNPs) on Pt-based, 3D neural electrodes is performed and the in vitro mechanical stability is examined using agarose gel, adhesive tape, and ultrasonication-based stress tests. EPD-generated coatings are highly stable inside simulated brain environments represented by agarose gel tests as well as after in vivo stimulation experiments. Electrochemical stability of the NP-modified surfaces is tested via cyclic voltammetry and that multiple scans may improve coating stability could be verified, indicated by higher signal stability following highly invasive adhesive tape stress tests. The brain sections post neural stimulation in rats are analyzed via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Measurements reveal higher levels of Pt near the region stimulated with coated electrodes, in comparison to uncoated controls. Even though local concentrations in the vicinity of the implanted electrode are elevated, the total Pt mass found is below systemic toxicologically relevant concentrations.


Subject(s)
Metal Nanoparticles , Animals , Rats , Platinum
9.
Chemphyschem ; 23(10): e202200033, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35380738

ABSTRACT

Noble metal alloy nanoclusters (NCs) are interesting systems as the properties of two or more elements can be combined in one particle, leading to interesting fluorescence phenomena. However, previous studies have been exclusively performed on ligand-capped NCs from wet chemical synthesis. This makes it difficult to differentiate to which extent the fluorescence is affected by ligand-induced effects or the elemental composition of the metal core. In this work, we used laser fragmentation in liquids (LFL) to fabricate colloidal gold-rich bi-metallic AuPt NCs in the absence of organic ligands and demonstrate the suitability of this technique to produce molar fraction series of 1nm alloy NC. We found that photoluminescence of ligand-free NCs is not a phenomenon limited to Au. However, even minute amounts of Pt atoms in the AuPt NCs lead to quenching and red-shift of the fluorescence, which may be attributed to the altered surface charge density.

10.
J Biomed Mater Res A ; 110(9): 1537-1550, 2022 09.
Article in English | MEDLINE | ID: mdl-35437923

ABSTRACT

Bioactive glass (BG) is a frequently used biomaterial applicable in bone tissue engineering and known to be particularly effective when applied in nanoscopic dimensions. In this work, we employed the scalable reactive laser fragmentation in liquids method to produce nanosized 45S5 BG in the presence of light-absorbing Fe and Cu ions. Here, the function of the ions was twofold: (i) increasing the light absorption and thus causing a significant increase in laser fragmentation efficiency by a factor of 100 and (ii) doping the BG with bioactive metal ions up to 4 wt%. Our findings reveal an effective downsizing of the BG from micrometer-sized educts into nanoparticles having average diameters of <50 nm. This goes along with successful element-specific incorporation of the metal ions into the BG, inducing co-doping of Fe and Cu ions as verified by energy-dispersive X-ray spectroscopy (EDX). In this context, the overall amorphous structure is retained, as evidenced by X-ray powder diffraction (XRD). We further demonstrate that the level of doping for both elements can be adjusted by changing the BG/ion concentration ratio during laser fragmentation. Consecutive ion release experiments using inductively-coupled plasma mass spectrometry (ICP-MS) were conducted to assess the potential bioactivity of the doped nanoscopic BG samples, and cell culture experiments using MG-63 osteoblast-like cells demonstrated their cytocompatibility. The elegant method of in situ co-doping of Fe and Cu ions during BG nanosizing may provide functionality-advanced biomaterials for future studies on angiogenesis or bone regeneration, particularly as the level of doping may be adjusted by ion concentrations and ion type in solution.


Subject(s)
Copper , Iron , Biocompatible Materials/chemistry , Cell Proliferation , Ceramics/chemistry , Copper/chemistry , Glass/chemistry , Ions , Lasers
SELECTION OF CITATIONS
SEARCH DETAIL