Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Future Med Chem ; 16(12): 1219-1237, 2024.
Article in English | MEDLINE | ID: mdl-38989988

ABSTRACT

Aim: Novel thiazole hybrids were synthesized via thiazolation of 4-phenylthiosemicarbazone (4). Materials & methods: The anticancer activity against the NCI 60 cancer cell line panel. Results: Methyl 2-(2-((1-(naphthalen-2-yl)ethylidene)hydrazineylidene)-4-oxo-3-phenylthiazolidin-5-ylidene)acetate (6a) showed significant anticancer activity at 10 µM with a mean growth inhibition (GI) of 51.18%. It showed the highest cytotoxic activity against the ovarian cancer OVCAR-4 with an IC50 of 1.569 ± 0.06 µM. Compound 6a inhibited PI3Kα with IC50 = 0.225 ± 0.01 µM. Moreover, compound 6a revealed a decrease of Akt and mTOR phosphorylation in OVCAR-4 cells. In addition, antibacterial activity showed that compounds 11 and 12 were the most active against Staphylococcus aureus. Conclusion: Compound 6a is a promising molecule that could be a lead candidate for further studies.


Novel naphthalene-azine-thiazole hybrids 5-12 were synthesized via late-stage thiazolation of the corresponding 4-phenylthiosemicarbazone 4. Compound 6a showed significant anticancer activity at single-dose screening and yielded excellent inhibitory activity with a mean GI of 51.18%. Compound 6a showed the highest cytotoxic activity against OVCAR-4 with an IC50 of 1.569 ± 0.06 µM. Moreover, compound 6a exhibited an IC50 of 31.89 ± 1.19 µM against normal ovarian cell line (OCE1) and a selectivity index of 19.1. Compound 6a inhibited PI3Kα with IC50 = 0.225 ± 0.01 µM compared with alpelisib (IC50 = 0.061 ± 0.003 µM). Moreover, compound 6a revealed a powerful decrease of Akt and mTOR phosphorylation in the OVCAR-4 cell line. The cell cycle analysis showed that compound 6a caused an arrest at the G2/M phase. The compound also increased the total apoptosis by 26.8-fold and raised the level of caspase-3 by 4.34 times in OVCAR-4. In addition, antibacterial activity was estimated against Gram-positive and Gram-negative bacterial strains. Compounds 11 and 12 were the most active derivatives, with MIC value of 256 µg/ml against Staphylococcus aureus. Molecular docking was done and showed that 6a interlocked and fitted well into the ATP binding site of PI3Kα kinase (Protein Data Bank ID: 4JPS) with a fitness value (-119.153 kcal/mol) and forms the key H-bonds with Val851 and Ser854 like the marketed PI3Kα inhibitor alpelisib. Consequently, 6a is the most promising molecule that could be a lead candidate for further studies.


Subject(s)
Antineoplastic Agents , Molecular Docking Simulation , Staphylococcus aureus , Thiazoles , Thiosemicarbazones , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemical synthesis , Staphylococcus aureus/drug effects , Cell Line, Tumor , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Cell Proliferation/drug effects , Microbial Sensitivity Tests , Molecular Structure , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Semicarbazones
SELECTION OF CITATIONS
SEARCH DETAIL
...