Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 57(26): 3797-3806, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29812914

ABSTRACT

The thermoacidophilic archaea Picrophilus torridus and Sulfolobus solfataricus catabolize glucose via a nonphosphorylative Entner-Doudoroff pathway and a branched Entner-Doudoroff pathway, respectively. Key enzymes for these Entner-Doudoroff pathways are the aldolases, 2-keto-3-deoxygluconate aldolase (KDG-aldolase) and 2-keto-3-deoxy-6-phosphogluconate aldolase [KD(P)G-aldolase]. KDG-aldolase from P. torridus (Pt-KDG-aldolase) is highly specific for the nonphosphorylated substrate, 2-keto-3-deoxygluconate (KDG), whereas KD(P)G-aldolase from S. solfataricus [Ss-KD(P)G-aldolase] is an enzyme that catalyzes the cleavage of both KDG and 2-keto-3-deoxy-6-phosphogluconate (KDPG), with a preference for KDPG. The structural basis for the high specificity of Pt-KDG-aldolase for KDG as compared to the more promiscuous Ss-KD(P)G-aldolase has not been analyzed before. In this work, we report the elucidation of the structure of Ss-KD(P)G-aldolase in complex with KDPG at 2.35 Å and that of KDG-aldolase from P. torridus at 2.50 Å resolution. By superimposition of the active sites of the two enzymes, and subsequent site-directed mutagenesis studies, a network of four amino acids, namely, Arg106, Tyr132, Arg237, and Ser241, was identified in Ss-KD(P)G-aldolase that interact with the negatively charged phosphate group of KDPG, thereby increasing the affinity of the enzyme for KDPG. This KDPG-binding network is absent in Pt-KDG-aldolase, which explains the low catalytic efficiency of KDPG cleavage.


Subject(s)
Aldehyde-Lyases/chemistry , Archaeal Proteins/chemistry , Gluconates/chemistry , Sulfolobus solfataricus/enzymology , Thermoplasmales/enzymology , Models, Molecular , Protein Domains , Structure-Activity Relationship
2.
J Bacteriol ; 192(4): 964-74, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20023024

ABSTRACT

The pathway of glucose degradation in the thermoacidophilic euryarchaeon Picrophilus torridus has been studied by in vivo labeling experiments and enzyme analyses. After growth of P. torridus in the presence of [1-(13)C]- and [3-(13)C]glucose, the label was found only in the C-1 and C-3 positions, respectively, of the proteinogenic amino acid alanine, indicating the exclusive operation of an Entner-Doudoroff (ED)-type pathway in vivo. Cell extracts of P. torridus contained all enzyme activities of a nonphosphorylative ED pathway, which were not induced by glucose. Two key enzymes, gluconate dehydratase (GAD) and a novel 2-keto-3-deoxygluconate (KDG)-specific aldolase (KDGA), were characterized. GAD is a homooctamer of 44-kDa subunits, encoded by Pto0485. KDG aldolase, KDGA, is a homotetramer of 32-kDa subunits. This enzyme was highly specific for KDG with up to 2,000-fold-higher catalytic efficiency compared to 2-keto-3-deoxy-6-phosphogluconate (KDPG) and thus differs from the bifunctional KDG/KDPG aldolase, KD(P)GA of crenarchaea catalyzing the conversion of both KDG and KDPG with a preference for KDPG. The KDGA-encoding gene, kdgA, was identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) as Pto1279, and the correct translation start codon, an ATG 24 bp upstream of the annotated start codon of Pto1279, was determined by N-terminal amino acid analysis. The kdgA gene was functionally overexpressed in Escherichia coli. Phylogenetic analysis revealed that KDGA is only distantly related to KD(P)GA, both enzymes forming separate families within the dihydrodipicolinate synthase superfamily. From the data we conclude that P. torridus degrades glucose via a strictly nonphosphorylative ED pathway with a novel KDG-specific aldolase, thus excluding the operation of the branched ED pathway involving a bifunctional KD(P)GA as a key enzyme.


Subject(s)
Archaeal Proteins/metabolism , Fructose-Bisphosphate Aldolase/metabolism , Gluconates/metabolism , Metabolic Networks and Pathways , Thermoplasmales/enzymology , Archaeal Proteins/chemistry , Archaeal Proteins/isolation & purification , Cloning, Molecular , Escherichia coli/genetics , Fructose-Bisphosphate Aldolase/chemistry , Fructose-Bisphosphate Aldolase/isolation & purification , Gene Expression , Glucose/metabolism , Molecular Weight , Phylogeny , Protein Multimerization , Sequence Analysis, Protein , Sequence Homology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substrate Specificity
3.
FEMS Microbiol Lett ; 273(2): 196-205, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17559573

ABSTRACT

The growth of Pyrobaculum aerophilum on yeast extract and nitrate was stimulated by the addition of maltose. Extracts of maltose/yeast extract/nitrate-grown cells contained all enzyme activities of a modified Embden-Meyerhof (EM) pathway, including ATP-dependent glucokinase, phosphoglucose isomerase, ATP-dependent 6-phosphofructokinase, fructose-1,6-phosphate aldolase, triose-phosphate isomerase, GAPOR, phosphoglycerate mutase, enolase and pyruvate kinase. The activity of GAPOR was stimulated about fourfold by maltose, indicating a role in sugar degradation. GAPOR was purified 200-fold to homogeneity and characterized as a 67 kDa monomeric, extremely thermostable protein. The enzyme showed high specificity for glyceraldehyde-3-phosphate and did not use glyceraldehyde, acetaldehyde or formaldehyde as substrates. By matrix-assisted laser desorption/ionization-time of flight analysis of the purified enzyme, ORF PA1029 was identified as a coding gene, gapor, in the sequenced genome of Pyrobaculum aerophilum. The data indicate that the (micro)aerophilic Pyrobaculum aerophilum contains a functional GAPOR as part of a modified EM pathway. Cells of the strictly aerobic crenarchaeon Aeropyrum pernix also contain enzyme activities of a modified EM pathway similar to that of Pyrobaculum aerophilum, except that a GAPN activity replaces GAPOR activity.


Subject(s)
Aeropyrum/enzymology , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Glycolysis/physiology , Pyrobaculum/enzymology , Aeropyrum/classification , Carbohydrate Metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/isolation & purification , Phylogeny , Pyrobaculum/classification , Substrate Specificity
4.
FEMS Microbiol Lett ; 259(1): 113-9, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16684110

ABSTRACT

Picrophilus torridus has been shown to degrade glucose via a nonphosphorylative Entner-Doudoroff (ED) pathway. Here we report the characterization of a key enzyme of this pathway, glycerate kinase (2-phosphoglycerate forming). The enzyme was purified 5,100-fold to homogeneity. The 95 kDa homodimeric protein catalyzed the ATP-dependent phosphorylation of glycerate specifically to 2-phosphoglycerate. The enzyme showed highest activity at 60 degrees C and pH 7.3, with ATP as phosphoryl donor and Mg(2+) as divalent cation. By MALDI-TOF analysis, ORF Pto1442 was identified in the genome of P. torridus as the encoding gene, designated gck. Homologs with high sequence identity were identified in the genomes of the archaea Thermoplasma and Sulfolobus spp. and Thermoproteus tenax, for which the operation of nonphosphorylative ED pathways, involving 2-phosphoglycerate forming glycerate kinases, has been proposed.


Subject(s)
Glyceric Acids/metabolism , Hot Temperature , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Thermoplasmales/enzymology , Amino Acid Sequence , Humans , Hydrogen-Ion Concentration , Kinetics , Molecular Sequence Data , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/isolation & purification , Phylogeny , Sequence Alignment , Substrate Specificity , Thermoplasmales/genetics
5.
FEBS Lett ; 580(5): 1198-204, 2006 Feb 20.
Article in English | MEDLINE | ID: mdl-16458304

ABSTRACT

Cells of Picrophilus torridus, grown on glucose, contained all enzyme activities of a non-phosphorylative Entner-Doudoroff pathway, including glucose dehydrogenase, gluconate dehydratase, 2-keto-3-deoxygluconate aldolase, glyceraldehyde dehydrogenase (GADH), glycerate kinase (2-phosphoglycerate forming), enolase and pyruvate kinase. GADH was purified to homogeneity. The 115-kDa homodimeric protein catalyzed the oxidation of glyceraldehyde with NADP+ at highest catalytic efficiency. NAD+ was not used. By MALDI-TOF analysis, open reading frame (ORF) Pto0332 was identified in the genome of P. torridus as the encoding gene, designated gadh, and the recombinant GADH was characterized. In Thermoplasma acidophilum ORF Ta0809 represents a gadh homolog with highest sequence identity; the gene was expressed and the recombinant protein was characterized as functional GADH with properties very similar to the P. torridus enzyme. Sequence comparison and phylogenetic analysis define both GADHs as members of novel enzyme family within the aldehyde dehydrogenase superfamily.


Subject(s)
Aldehyde Oxidoreductases , Thermoplasma/enzymology , Thermoplasmales/enzymology , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/isolation & purification , Aldehyde Oxidoreductases/metabolism , Amino Acid Sequence , Cloning, Molecular , Glyceraldehyde/metabolism , Kinetics , NADP/metabolism , Open Reading Frames , Oxidation-Reduction , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...