Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1128496, 2023.
Article in English | MEDLINE | ID: mdl-37033637

ABSTRACT

Background: Neuropathy is a prevalent and debilitating complication of poorly managed diabetes, contributing towards poor quality of life, amputation risk, and increased mortality. The available therapies for diabetic neuropathic pain (DPN) have limitations in terms of efficacy, tolerability and patient compliance. Dysfunction in the peripheral and central monoaminergic system has been evidenced in various types of neuropathic and acute pain. The objective of the present study was to investigate 1-methyl 1, 2, 3, 4-tetrahydroisoquinoline (1MeTIQ), an endogenous amine found in human brain with a known neuroprotective profile, in a model of streptozotocin (STZ) induced neuropathic pain. Methods: Diabetic neuropathy in male BALB/c mice was induced by intraperitoneal injection of a single dose of STZ (200 mg/kg). Upon development of DPN after 4 weeks, mice were investigated for mechanical allodynia (von Frey filament pressure test) and thermal hyperalgesia (tail immersion test). Ondansetron (1.0 mg/kg i.p.), naloxone (3.0 mg/kg i.p.) and yohimbine (2.0 mg/kg i.p.) were used to elucidate the possible mechanism involved. Postmortem frontal cortical, striatal and hippocampal tissues were dissected and evaluated for changes in levels of dopamine, noradrenaline and serotonin using High-Performance Liquid Chromatography (HPLC) with UV detection. Results: Acute administration of 1MeTIQ (15-45 mg/kg i.p.) reversed streptozotocin-induced diabetic neuropathic static mechanical allodynia (von Frey filament pressure test) and thermal hyperalgesia (tail immersion test), these outcomes being comparable to standard gabapentin. Furthermore, HPLC analysis revealed that STZ-diabetic mice expressed lower concentrations of serotonin in all three brain regions examined, while dopamine was diminished in the striatum and 1MeTIQ reversed all these neurotransmitter modifications. These findings suggest that the antihyperalgesic/antiallodynic activity of 1MeTIQ may be mediated in part via supraspinal opioidergic and monoaminergic modulation since they were naloxone, yohimbine and ondansetron reversible. Conclusion: It was also concluded that acute treatment with 1MeTIQ ameliorated STZ-induced mechanical allodynia and thermal hyperalgesia and restored brain regionally altered serotonin and dopamine concentrations which signify a potential for 1MeTIQ in the management of DPN.

2.
Front Pharmacol ; 14: 1135497, 2023.
Article in English | MEDLINE | ID: mdl-37033640

ABSTRACT

Purpose: Chronic unpredictable stress (CUS) induces long-term neuronal and synaptic plasticity with a neurohormonal disbalance leading to the development of co-existing anxiety, depression, and cognitive decline. The side effects and delayed onset of current clinically used antidepressants has prompted a quest for antidepressants with minimum drawbacks. Fraxetin is a natural coumarin derivative with documented antioxidant and neuroprotective activity though its effects on stress are unknown. This study therefore aimed to investigate any possible acute effect of fraxetin in behavioral tests including a CUS paradigm in correlation with brain regional neurochemical changes. Methods: Mice were subjected to a series of mild stressors for 14 days to induce CUS. Furthermore, behavioral performance in the open field test, forced swim test (FST), Y-maze and elevated plus-maze were evaluated. Postmortem frontal cortical, hippocampal and striatal tissues were analyzed via high-performance liquid chromatography (HPLC) for neurochemical changes. Result: Acute administration of fraxetin (20-60 mg/kg, orally) decreased depression-like behavior in the FST and behavioral anxiety in both the open field test and elevated plus-maze. Memory deficits induced during the CUS paradigm were markedly improved as reflected by enhanced Y maze performance. Concurrent biochemical and neurochemical analyses revealed that only the two higher fraxetin doses decreased elevated serum corticosterone levels while diminished serotonin levels in the frontal cortex, striatum and hippocampus were reversed, though noradrenaline was only raised in the striatum. Concomitantly, dopamine levels were restored by fraxetin at the highest dose exclusively in the frontal cortex. Conclusion: Acute treatment with fraxetin attenuated CUS-induced behavioral deficits, ameliorated the increased corticosterone level and restored altered regional neurotransmitter levels and this may indicate a potential application of fraxetin in the management of anxiety and depression modeled by CUS. However, further studies are warranted regarding the chronic effects of fraxetin behaviorally and neurochemically.

3.
Drug Des Devel Ther ; 16: 1573-1593, 2022.
Article in English | MEDLINE | ID: mdl-35665194

ABSTRACT

Purpose: Chronic ethanol exposure causes neurotoxicity and long-term learning and memory impairment along with hippocampal and frontal cortical dysfunction. Flavonoids possess antioxidant and anti-inflammatory properties believed to be contributory factors in reversing cognitive decline. 6-Methoxyflavone (6-MOF), a flavonoid occurring naturally in medicinal plants, has been reported to instigate neuroprotection by reversing cisplatin-induced hyperalgesia and allodynia. Consequently, this study was designed to investigate 6-MOF activity in models of chronic ethanol-induced cognitive impairment along with neurochemical correlates. Methods: Mice were given ethanol orally (2.0 g/kg daily) for 24 days plus either saline, 6-MOF (25-75mg/kg) or donepezil (4mg/kg) and then ethanol was withdrawn for the next 6 days. Animals were subsequently assessed for their cognitive performance in several models on days 1, 12, and 24, during abstinence (Day-26) and on the 7th day of the washout period. Following behavioral assessment, post-mortem dopamine, noradrenaline and vitamin C concentrations were quantified in the frontal cortex, hippocampus and striatum, using HPLC with UV detection. Results: Chronic ethanol treatment suppressed locomotor activity and impaired cognitive tasks, which included novel object recognition, performance in the Morris water maze as well as the Y-maze, socialization and nest-building behavior throughout the protocol and during withdrawal. These behavioral deficits were at least partially restored by the co-administration of 6-MOF or donepezil with ethanol as were ethanol-induced deficits in frontal cortical and hippocampal dopamine plus noradrenaline, together with striatal dopamine. 6-MOF co-administration with ethanol also modestly restored striatal vitamin C levels. Conclusion: It is postulated that, apart from donepezil, 6-MOF may be useful not only in the treatment of ethanol withdrawal severity but also in the management of chronic ethanol withdrawal induced cognitive impairment.


Subject(s)
Cognitive Dysfunction , Ethanol , Animals , Ascorbic Acid , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Donepezil , Dopamine , Flavones , Hippocampus , Maze Learning , Mice , Norepinephrine
4.
Pharmaceutics ; 14(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35214141

ABSTRACT

Pentazocine (PTZ), a narcotic-antagonist analgesic, has been extensively used in the treatment of initial carcinogenic or postoperative pain. Hepatic first-pass metabolism results in low oral bioavailability and high dose wastage. Herein, 10 mg (-)-Pentazocine (HPLC-grade) was incorporated to solid lipid nanoparticles (SLNs) using a double water-oil-water (w/o/w) emulsion by solvent emulsification-evaporation technique, followed by high shear homogenization to augment its oral bioavailability, considering the lymphatic uptake. The resulting SLNs were characterized for zeta potential (ZP), particle size (PS), and polydispersity index (PDI) using a zetasizer. The entrapment efficiency (EE) and loading capacity (LC) were calculated. Chemical interactions, through the identification of active functional groups, were assessed by Fourier-transformed infrared (FTIR) spectroscopy. The nature (crystallinity) of the SLNs was determined by X-ray diffractometry (XRD). The surface morphology was depicted by transmission electron microscopy (TEM). In vitro (in Caco-2 cells) and in vivo (in male Wistar rats) investigations were carried out to evaluate the PTZ release behavior and stability, as well as the cellular permeation, cytotoxicity, systemic pharmacokinetics, antinociceptive, anti-inflammatory, and antioxidative activities of PTZ-loaded SLNs, mainly compared to free PTZ (marketed conventional dosage form). The optimized PTZ-loaded SLN2 showed significantly higher in vitro cellular permeation and negligible cytotoxicity. The in vivo bioavailability and pharmacokinetics parameters (t1/2, Cmax) of the PTZ-loaded SLNs were also significantly improved, and the nociception and inflammation, following carrageenan-induced inflammatory pain, were markedly reduced. Concordantly, PTZ-loaded SLNs showed drastic reduction in the oxidative stress (e.g., malonaldehyde (MDA)) and proinflammatory cytokines (e.g., Interleukin (IL)-1ß, -6, and TNF-α). The histological features of the paw tissue following, carrageenan-induced inflammation, were significantly improved. Taken together, the results demonstrated that PTZ-loaded SLNs can improve the bioavailability of PTZ by bypassing the hepatic metabolism via the lymphatic uptake, for controlled and sustained drug delivery.

5.
Gastroenterol Res Pract ; 2020: 4253174, 2020.
Article in English | MEDLINE | ID: mdl-33204254

ABSTRACT

Combretum fragrans (Combretaceae) is a Cameroonian medicinal plant containing various secondary metabolites and traditionally used for the treatment of several pathologies. Two cycloartane-type triterpenes, Combretin A and Combretin B, were isolated from this plant. This study was aimed at evaluating the anti-inflammatory, antioxidant, and anticolitis effects of these compounds. In vitro anti-inflammatory properties were evaluated by inhibition of cyclooxygenase, 5-lipoxygenase, and denaturation of the protein; antioxidant properties were assessed by using 1,1-diphenyl-2-picrylhydrazyl (DPPH), (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)) ABTS•+, capacity tests ferric reducing antioxidant (FRAP), and trapping nitric oxide. For in vivo analysis, we used the model of ulcerative colitis induced by Dextran Sulfate Sodium (DSS). Studies of the anti-inflammatory activity showed that Combretin A and Combretin B had maximal inhibitory activity on cyclooxygenase (71.92% and 89.59%), 5-lipoxygenase (76.68% and 91.21%), and protein denaturation (63.93% and 87.78%). Antioxidant activity on DPPH, ABTS•+, ferric reducing antioxidant capacity (FRAP), and nitric oxide scavenging showed that Combretin A and Combretin B showed good antioxidant activities. These compounds significantly reduced the signs of DSS-induced colitis in the treated animals by preventing the weight loss of the animals, by significantly reducing the disease activity index, improving the condition of the stool, preventing the reduction of the length of the colon, and preventing the degradation of the colon. This study revealed that Combretin A and Combretin B have anti-inflammatory, antioxidant, and curative properties against colitis experimentally induced by DSS in rats.

6.
Biomed Pharmacother ; 131: 110783, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33152941

ABSTRACT

Withdrawal from chronic nicotine has damaging effects on a variety of learning and memory tasks. Various Sulfonamides that act as carbonic anhydrase inhibitors have documented role in modulation of various cognitive, learning, and memory processing. We investigated the effects of 4-Fluoro-N-(4-sulfamoylbenzyl) Benzene Sulfonamide (4-FBS) on nicotine withdrawal impairments in rats using Morris water maze (MWM), Novel object recognition, Passive avoidance, and open field tasks. Also, Brain-derived neurotrophic factor (BDNF) profiling and in vivo field potential recording were assessed. Rats were exposed to saline or chronic nicotine 3.8 mg/kg subcutaneously for 14 days in four divided doses, spontaneous nicotine withdrawal was induced by quitting nicotine for 72 h (hrs). Animals received 4-FBS at 20, 40, and 60 mg/kg after 72 h of withdrawal in various behavioral and electrophysiological paradigms. Nicotine withdrawal causes a deficit in learning and long-term memory in the MWM task. No significant difference was found in novel object recognition tasks among all groups while in passive avoidance task nicotine withdrawal resulted in a deficit of hippocampus-dependent fear learning. Anxiety like behavior was observed during nicotine withdrawal. Plasma BDNF level was reduced during nicotine withdrawal as compared to the saline group reflecting mild cognitive impairment, stress, and depression. Withdrawal from chronic nicotine altered hippocampal plasticity, caused suppression of long-term potentiation (LTP) in the CA1 area of the hippocampus. Our results showed that 4-FBS at 40 and 60 mg/kg significantly prevented nicotine withdrawal-induced cognitive deficits in behavioral as well as electrophysiological studies. 4-FBS at 60 mg/kg upsurge nicotine withdrawal-induced decrease in plasma BDNF. We conclude that 4-FBS at 40 and 60 mg /kg effectively prevented chronic nicotine withdrawal-induced impairment in long term potentiation and cognitive performance.


Subject(s)
Cognition Disorders/drug therapy , Hippocampus/drug effects , Substance Withdrawal Syndrome/drug therapy , Animals , Anxiety/drug therapy , Anxiety/etiology , Avoidance Learning/drug effects , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/blood , Cognition Disorders/etiology , Cognition Disorders/physiopathology , Dose-Response Relationship, Drug , Fear/drug effects , Hippocampus/pathology , Long-Term Potentiation/drug effects , Male , Maze Learning/drug effects , Neuronal Plasticity/drug effects , Nicotine/adverse effects , Rats , Rats, Wistar , Substance Withdrawal Syndrome/complications , Tobacco Use Disorder/psychology
7.
Int J Nanomedicine ; 14: 3103-3110, 2019.
Article in English | MEDLINE | ID: mdl-31118625

ABSTRACT

Purpose: To investigate the effects of zinc oxide nanoparticles (ZnO NPs) on chloroquine (CQ)-induced itching, and overall behavior of mice after oral administration of ZnO NPs of various sizes and doses. Background: With the wide-spread use of ZnO NPs in pharmaceuticals and cosmetics, concerns about their safety and toxicity are also increasing. Multiple aspects of ZnO NPs regarding cytotoxicity and tolerability are under investigation globally. Still, a clear conclusion about their safety has not been reached. Chloroquine phosphate is an antimalarial with known side effects of itching in humans and animals. In this study, CQ was used to induce itching in mice, and the effects of ZnO NPs on scratching and other neurological behavior of mice were observed. Methods: Female BALB/c mice were divided into eleven groups of six mice each. ZnO NPs of various sizes and doses were administered orally 1 hour before CQ (32 mg/kg body weight) was administered subcutaneously. The effect of ZnO NPs on CQ-induced pruritus was observed for the next 30 minutes. Simultaneously, overall behavioral changes (socialization and locomotion) were also recorded using a video camera. Results: A significant reduction (P˂0.001) in scratching bouts was observed at all three doses of ZnO NPs (particle sizes 100, 30 nm, and green synthesized 30 nm). Locomotion was reduced significantly (P˂0.001) in ZnO NPs-treated groups in comparison to normal saline and CQ group, additionally, a significant increase in socialization (P˂0.05) was observed in ZnO NP-treated groups as compared to CQ group. Conclusion: ZnO NPs, instead of aggravating the dermatological condition, ameliorated the pruritus. All sizes of ZnO NPs used significantly improved socialization among mice and reduced locomotion activity.


Subject(s)
Green Chemistry Technology/methods , Metal Nanoparticles/therapeutic use , Pruritus/chemically induced , Pruritus/therapy , Zinc Oxide/therapeutic use , Administration, Oral , Animals , Behavior, Animal , Chloroquine/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Locomotion , Metal Nanoparticles/ultrastructure , Mice, Inbred BALB C , Particle Size , Social Behavior , X-Ray Diffraction , Zinc Oxide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...