Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38941051

ABSTRACT

Developing countries face multifaceted problems of water pollution and futile measures to combat water pollution. This study was conducted to explore the potential application of sustainable nature-based solutions, hybrid constructed wetlands, and the application of filamentous fungi to treat polluted river water that receives sewage and industrial wastewater. A pilot-scale hybrid constructed wetland design comprising two types of floating plants in distinct tanks along with a floating wetland and a free-water surface wetland connected in series was commissioned and tested. The system successfully removed organic pollution (BOD 94% and COD 90%), nutrients (NH4-N and NO3-N 67% and PO4-P 81%), and heavy metals (Cr 75%, Ni 56%, and Fe 79%) in 40 h and showed a high buffering capacity to cope with the varying pollutant loads. Metagenomics analysis of treated and untreated samples of river water revealed a diversified spatial bacterial community with ~ 25% sequences related to sulfur-metabolizing bacteria, genus Sulfuricurvum. The application of an immobilized strain of A. niger as a mycoremediation technique was also tested. It successfully removed pollutants in the combined sewage and industrial wastewater present in river water: COD (96%), TSS (97%), NH4-N (65%), NO3-N (67%), and PO4-P (78%). This study demonstrated that hybrid constructed wetlands and mycoremediation can be used as sustainable wastewater treatment options in the local context and also in developing countries where most of the conventional wastewater treatment plants do not operate.

SELECTION OF CITATIONS
SEARCH DETAIL
...