Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 32(7): 1184-1192, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36355422

ABSTRACT

Congenital hearing impairment (HI) is a genetically highly heterogeneous disorder in which prompt recognition and intervention are crucial to optimize outcomes. In this study, we used exome sequencing to investigate a large consanguineous Pakistani family with eight affected individuals showing bilateral severe-to-profound HI. This identified a homozygous splice region variant in STX4 (c.232 + 6T>C), which causes exon skipping and a frameshift, that segregated with HI (two-point logarithm of odds (LOD) score = 5.9). STX4, a member of the syntaxin family, is a component of the SNARE machinery involved in several vesicle transport and recycling pathways. In silico analysis showed that murine orthologue Stx4a is highly and widespread expressed in the developing and adult inner ear. Immunofluorescent imaging revealed localization of STX4A in the cell body, cell membrane and stereocilia of inner and outer hair cells. Furthermore, a morpholino-based knockdown of stx4 in zebrafish showed an abnormal startle response, morphological and developmental defects, and a disrupted mechanotransduction function in neuromast hair cells measured via FM1-43 uptake. Our findings indicate that STX4 dysfunction leads to HI in humans and zebrafish and supports the evolutionary conserved role of STX4 in inner ear development and hair cell functioning.


Subject(s)
Mechanotransduction, Cellular , Zebrafish , Adult , Humans , Animals , Mice , Zebrafish/genetics , Qa-SNARE Proteins/genetics , Hearing/genetics , Hair Cells, Auditory, Outer
2.
Commun Biol ; 5(1): 511, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637313

ABSTRACT

Oligodendrocyte progenitor cells (OPCs) express protocadherin 15 (Pcdh15), a member of the cadherin superfamily of transmembrane proteins. Little is known about the function of Pcdh15 in the central nervous system (CNS), however, Pcdh15 expression can predict glioma aggression and promote the separation of embryonic human OPCs immediately following a cell division. Herein, we show that Pcdh15 knockdown significantly increases extracellular signal-related kinase (ERK) phosphorylation and activation to enhance OPC proliferation in vitro. Furthermore, Pcdh15 knockdown elevates Cdc42-Arp2/3 signalling and impairs actin kinetics, reducing the frequency of lamellipodial extrusion and slowing filopodial withdrawal. Pcdh15 knockdown also reduces the number of processes supported by each OPC and new process generation. Our data indicate that Pcdh15 is a critical regulator of OPC proliferation and process motility, behaviours that characterise the function of these cells in the healthy CNS, and provide mechanistic insight into the role that Pcdh15 might play in glioma progression.


Subject(s)
Glioma , Oligodendrocyte Precursor Cells , Cadherin Related Proteins , Cell Proliferation , Glioma/genetics , Glioma/metabolism , Humans , Oligodendroglia , Protocadherins
3.
Eur J Hum Genet ; 30(1): 22-33, 2022 01.
Article in English | MEDLINE | ID: mdl-34135477

ABSTRACT

Hearing impairment (HI) is a common disorder of sensorineural function with a highly heterogeneous genetic background. Although substantial progress has been made in the understanding of the genetic etiology of hereditary HI, many genes implicated in HI remain undiscovered. Via exome and Sanger sequencing of DNA samples obtained from consanguineous Pakistani families that segregate profound prelingual sensorineural HI, we identified rare homozygous missense variants in four genes (ADAMTS1, MPDZ, MVD, and SEZ6) that are likely the underlying cause of HI. Linkage analysis provided statistical evidence that these variants are associated with autosomal recessive nonsyndromic HI. In silico analysis of the mutant proteins encoded by these genes predicted structural, conformational or interaction changes. RNAseq data analysis revealed expression of these genes in the sensory epithelium of the mouse inner ear during embryonic, postnatal, and adult stages. Immunohistochemistry of the mouse cochlear tissue, further confirmed the expression of ADAMTS1, SEZ6, and MPDZ in the neurosensory hair cells of the organ of Corti, while MVD expression was more prominent in the spiral ganglion cells. Overall, supported by in silico mutant protein analysis, animal models, linkage analysis, and spatiotemporal expression profiling in the mouse inner ear, we propose four new candidate genes for HI and expand our understanding of the etiology of HI.


Subject(s)
ADAMTS1 Protein/genetics , Carboxy-Lyases/genetics , Hearing Loss, Sensorineural/genetics , Membrane Proteins/genetics , ADAMTS1 Protein/chemistry , ADAMTS1 Protein/metabolism , Animals , Carboxy-Lyases/chemistry , Carboxy-Lyases/metabolism , Female , Genes, Recessive , Hair Cells, Auditory/metabolism , Hearing Loss, Sensorineural/pathology , Humans , Male , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mice , Mutation , Pedigree , Protein Domains
4.
J Mol Med (Berl) ; 99(11): 1571-1583, 2021 11.
Article in English | MEDLINE | ID: mdl-34322716

ABSTRACT

Otitis media (OM) is common in young children and can cause hearing loss and speech, language, and developmental delays. OM has high heritability; however, little is known about OM-related molecular and genetic processes. CDHR3 was previously identified as a locus for OM susceptibility, but to date, studies have focused on how the CDHR3 p.Cys529Tyr variant increases epithelial binding of rhinovirus-C and risk for lung or sinus pathology. In order to further delineate a role for CDHR3 in OM, we performed the following: exome sequencing using DNA samples from OM-affected individuals from 257 multi-ethnic families; Sanger sequencing, logistic regression and transmission disequilibrium tests for 407 US trios or probands with OM; 16S rRNA sequencing and analysis for middle ear and nasopharyngeal samples; and single-cell RNA sequencing and differential expression analyses for mouse middle ear. From exome sequence data, we identified a novel pathogenic CDHR3 splice variant that co-segregates with OM in US and Finnish families. Additionally, a frameshift and six missense rare or low-frequency variants were identified in Finnish probands. In US probands, the CDHR3 p.Cys529Tyr variant was associated with the absence of middle ear fluid at surgery and also with increased relative abundance of Lysobacter in the nasopharynx and Streptomyces in the middle ear. Consistent with published data on airway epithelial cells and our RNA-sequence data from human middle ear tissues, Cdhr3 expression is restricted to ciliated epithelial cells of the middle ear and is downregulated after acute OM. Overall, these findings suggest a critical role for CDHR3 in OM susceptibility. KEY MESSAGES: • Novel rare or low-frequency CDHR3 variants putatively confer risk for otitis media. • Pathogenic variant CDHR3 c.1653 + 3G > A was found in nine families with otitis media. • CDHR3 p.Cys529Tyr was associated with lack of effusion and bacterial otopathogens. • Cdhr3 expression was limited to ciliated epithelial cells in mouse middle ear. • Cdhr3 was downregulated 3 h after infection of mouse middle ear.


Subject(s)
Cadherin Related Proteins/genetics , Membrane Proteins/genetics , Otitis Media/genetics , Animals , Child , Child, Preschool , Female , Genetic Predisposition to Disease , Humans , Infant , Male , Mice, Inbred C57BL , Microbiota/genetics , Mutation , Otitis Media/microbiology , RNA, Ribosomal, 16S , Transcriptome
5.
Biomolecules ; 11(5)2021 04 22.
Article in English | MEDLINE | ID: mdl-33921969

ABSTRACT

Epidermolysis bullosa (EB) includes a group of rare gesnodermatoses that result in blistering and erosions of the skin and mucous membranes. Genetically, pathogenic variants in around 20 genes are known to alter the structural and functional integrity of intraepidermal adhesion and dermo-epidermal anchorage, leading to four different types of EB. Here we report the underlying genetic causes of EB phenotypes segregating in seven large consanguineous families, recruited from different regions of Pakistan. Whole exome sequencing, followed by segregation analysis of candidate variants through Sanger sequencing, identified eight pathogenic variants, including three novel (ITGB4: c.1285G>T, and c.3373G>A; PLEC: c.1828A>G) and five previously reported variants (COL7A1: c.6209G>A, and c.1573C>T; FERMT1: c.676insC; LAMA3: c.151insG; LAMB3: c.1705C>T). All identified variants were either absent or had very low frequencies in the control databases. Our in-silico analyses and 3-dimensional (3D) molecular modeling support the deleterious impact of these variants on the encoded proteins. Intriguingly, we report the first case of a recessively inherited form of rare EBS-Ogna associated with a homozygous variant in the PLEC gene. Our study highlights the clinical and genetic diversity of EB in the Pakistani population and expands the mutation spectrum of EB; it could also be useful for prenatal diagnosis and genetic counseling of the affected families.


Subject(s)
Epidermolysis Bullosa/genetics , Genetic Variation/genetics , Cell Adhesion Molecules/genetics , Collagen Type VII/genetics , Epidermolysis Bullosa/classification , Epidermolysis Bullosa/physiopathology , Family , Female , Homozygote , Humans , Integrin beta4/genetics , Laminin/genetics , Male , Membrane Proteins/genetics , Mutation , Neoplasm Proteins/genetics , Pakistan , Pedigree , Phenotype , Plectin/genetics , Exome Sequencing/methods , Kalinin
6.
Mol Biol Rep ; 47(12): 9987-9993, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33231815

ABSTRACT

Hearing loss (HL) is clinically and genetically heterogeneous disorder and is the most frequent occurring sensory deficit in humans. This study was conducted to decipher the genetic cause of HL occurring in two large consanguineous Pakistani families (GCNF-01, GCNF-03). Family history and pure tone audiometry of both families suggested prelingual HL, while the affected individuals of GCNF-01 also had low vision and balance problems, consistent with cardinal features of Usher syndrome type I (USH1). Exome sequencing followed by segregating analysis revealed a novel splice site variant (c.877-1G > A) of USH1C occurring with USH1 phenotype in family GCNF01. While the affected individual of family GCNF-03 were homozygous for the c.716 T > A, p.(Val239Asp) previously reported pathogenic variant of SLC26A4. Both variants have very low frequencies in control database. In silico mutagenesis and 3-dimensional simulation analyses revealed that both variants have deleterious impact on the proteins folding and secondary structures. Our study expands the mutation spectrum of the HL genes and emphasizes the utility of exome sequencing coupled with bioinformatics tools for clinical genetic diagnosis, prognosis, and family counseling.


Subject(s)
Cell Cycle Proteins/genetics , Cytoskeletal Proteins/genetics , Sulfate Transporters/genetics , Usher Syndromes/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Variation , Humans , Male , Pakistan/epidemiology , Usher Syndromes/epidemiology , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...