Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(37): 32840-32848, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36157773

ABSTRACT

Nanoparticles (NPs) made of metals, polymers, micelles, and liposomes are increasingly being used in various biomedical applications. However, most of these NPs are hazardous for long- and short-term use and hence have restricted biomedical applications. Therefore, naturally derived, biocompatible, and biodegradable nanoconstructs are being explored for such applications. Inspired by the biology of viruses, researchers are exploring the viral proteins that hold considerable promise in biomedical applications. The viral proteins are highly stable and further amenable to suit specific biological applications. Among various viral proteins, vesicular stomatitis virus glycoprotein (VSV-G) has emerged as one of the most versatile platforms for biomedical applications. Starting with their first major use in lentivirus/retrovirus packaging systems, the VSV-G-based reagents have been tested for diverse biomedical use, many of which are at various stages of clinical trials. This manuscript discusses the recent advancements in the use of the VSV-G-based reagents in medical, biological research, and clinical applications particularly highlighting emerging applications in biomedical imaging.

2.
ACS Omega ; 6(35): 22616-22624, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34514233

ABSTRACT

Indocyanine green (ICG) is a clinically approved near-infrared (NIR) contrast agent used in medical diagnosis. However, ICG has not been used to its fullest for biomedical imaging applications due to its low fluorescence quantum yield, aqueous instability, concentration-dependent aggregation, and photo and thermal degradations, leading to quenching of its fluorescence emission. In the present study, a nanosized niosomal formulation, ICGNiosomes (ICGNios), is fabricated to encapsulate and protect ICG from degradation. Interestingly, compared to free ICG, the ICGNios exhibited higher fluorescence quantum yield and fluorescence emission with a bathochromic shift. Also, ICGNios nanoparticles are biocompatible, biodegradable, and readily uptaken by the cells. Furthermore, ICGNios show more enhanced fluorescence intensity through ∼1 cm thick chicken breast tissue compared to free ICG, which showed minimal emission through the same thickness of tissue. Our results suggest that ICGNios could offer a promising platform for deep-tissue NIR in vivo imaging to visualize inaccessible tissue microstructures for disease diagnosis and therapeutics.

3.
ACS Biomater Sci Eng ; 7(7): 3351-3360, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34111927

ABSTRACT

An effective drug delivery system (DDS) relies on an efficient cellular uptake and faster intracellular delivery of theranostic agents, bypassing the endosomal mediated degradation of the payload. The use of viral nanoparticles (VNPs) permits such advancement, as the viruses are naturally evolved to infiltrate the host cells to deliver their genetic material. As a proof of concept, we bioengineered the vesicular stomatitis virus glycoprotein (VSV-G)-based near-infrared (NIR) active viral nanoconstructs (NAVNs) encapsulating indocyanine green dye (ICG) for NIR bioimaging. NAVNs are spherical in size and have the intrinsic cellular-fusogenic properties of VSV-G. Further, the NIR imaging displaying higher fluorescence intensity in NAVNs treated cells suggests enhanced cellular uptake and delivery of ICG by NAVNs compared to the free form of ICG. The overall study highlights the effectiveness of VSV-G-based VNPs as an efficient delivery system for NIR fluorescence imaging.


Subject(s)
Nanoparticles , Viral Proteins , Drug Delivery Systems , Fluorescence , Indocyanine Green
SELECTION OF CITATIONS
SEARCH DETAIL
...