Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Article in English | MEDLINE | ID: mdl-38767741

ABSTRACT

Green nanotechnology is one of the most expanding fields that provides numerous novel nanoparticle drug formulations with enhanced bioactivity performance. This study aims to synthesize mesoporous metal organic framework (ZIF-8) phytofabricated with the herb Allium sativum (As) as an indicator system for its antibacterial and antifungal impact. The successful synthesis of ZIF-8 as nanocomposite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning coupled with energy-dispersive X-ray spectroscopy and transmission electron microscopy (SEM-EDX and TEM) that showed the textural retainment of ZIF-8 on composite formation with A. sativum. The nanocomposite, A. sativum extract, and ZIF-8 were subjected to antimicrobial assays against Shigella flexneri, Candida albicans, and Candida parapsilosis. The comparative results indicated the potential action of nanocomposite against the bacteria and both the Candida sps; however, the antifungal action against the Candida sps was more effective than the bacterium S. flexneri. The findings suggest that plants, being an important component of ecosystems, could be further explored for the novel drug discovery using green nanotechnology to enhance their impact on the drug-resistant pathogens.

2.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37895966

ABSTRACT

Nanotherapeutics have attracted tremendous research interest in the modern pharmaceutical and biomedical industries due to their potential for drug development, targeted delivery, and therapeutic applications. Therefore, the current study underpins the synthesis of praseodymium ion (Pr3+)-substituted Ni0.5Co0.5Fe2O4 nano-spinel ferrites, (Co0.5Ni0.5PrxFe2-xO4 (0.0 ≤ x ≤ 0.10) NSFs, CoNiPr (x ≤ 0.10) NSFs) via the sonochemical route for its application as a nanotherapeutic treatment option. The synthesized nanomaterial was characterized using various analytical techniques, including scanning/transmission electron microscopy (SEM) and X-ray powder diffractometry (XRD). After substitution with Pr (x = 0.08), the particle size, polydispersity index, and zeta potential analysis indicated an increase in hydrodynamic diameter, with an average zeta potential value of -10.2 mV. The investigation of CoNiPr (x ≤ 0.10) NSFs on colorectal cancer (HCT-116) cells demonstrated a significant effect on cancer cell viability. The inhibitory concentration (IC50) of CoNiPr (x ≤ 0.10) NSFs was between 46 ± 0.91 and 288 ± 8.21 for HCT-116 cells. The effect of CoNiPr (x ≤ 0.10) NSFs on normal human embryonic kidney (HEK-293) cells showed a reduction in the HEK-293 cell viability; however, the cell viability was better than HCT-116. The NSFs treatment also showed morphological changes in cancer cell nuclei, as revealed by DAPI (4',6-diamidino-2-phenylindole), nuclear disintegration, and chromatic fragmentation, which are signs of apoptosis or programmed cell death. To examine the potential antifungal effects of CoNiPr NSFs on Candida albicans, known to cause candidemia among cancer patients, the viability of the cells was assessed post treatment with CoNiPr (x ≤ 0.10) NSFs. The increasing ratio of dopant had a moderate impact on the percentage of cell viability loss of 42, 44, and 43% with x = 0.06, 0.08, and 0.10, respectively. These results reinforce that increased dopant significantly impacts the antifungal properties of the synthesized nanomaterial. These findings support the idea that NSFs might be useful in pharmaceuticals.

3.
Front Pharmacol ; 14: 1213824, 2023.
Article in English | MEDLINE | ID: mdl-37521476

ABSTRACT

The revolution of biomedical applications has opened new avenues for nanotechnology. Zinc Chromium vanadate nanoparticles (VCrZnO4 NPs) have emerged as an up-and-coming candidate, with their exceptional physical and chemical properties setting them apart. In this study, a one-pot solvothermal method was employed to synthesize VCrZnO4 NPs, followed by a comprehensive structural and morphological analysis using a variety of techniques, including X-Ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, Energy-dispersive X-ray, and X-ray photoelectron spectroscopy. These techniques confirmed the crystallinity of the NPs. The VCrZnO4 NPs were tested for their antibacterial activity against primary contaminants such as Enterobacteriaceae, including Shigella flexneri, Salmonella cholerasis, and Escherichia coli, commonly found in hospital settings, using the broth dilution technique. The results indicated a stronger antibacterial activity of VCrZnO4 NPs against Shigella and Salmonella than E. coli. Electron microscopy showed that the NPs caused severe damage to the bacterial cell wall and membrane, leading to cell death. In addition, the study evaluated the anticancer activities of the metal complexes in vitro using colorectal cancer cells (HCT-116) and cervical cancer cells (HELA), along with non-cancer cells and human embryonic kidney cells (HEK-293). A vanadium complex demonstrated efficient anticancer effects with half-inhibitory concentrations (IC50) of 38.50+3.50 g/mL for HCT-116 cells and 42.25+4.15 g/mL for HELA cells. This study highlights the potential of Zinc Chromium vanadate nanoparticles as promising candidates for antibacterial and anticancer applications. Various advanced characterization techniques were used to analyze the properties of nanomaterials, which may help develop more effective and safer antibacterial and anticancer agents in the future.

4.
J Infect Public Health ; 16(4): 611-617, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36857834

ABSTRACT

World is in the middle of the pandemic (COVID-19), caused by SARS-COV-2 virus, which is a significant global health crisis after Spanish influenza in the beginning of 20th century. Progressive drastic steps have been enforced to minimize the transmission of the disease. Likewise, in the current years, antimicrobial resistance (AMR) has been referred as one of the potential perils to the global economy and health; however, it is now veiled under the present pandemic. During the current pandemic, AMR to available frontline antibiotics may prove fatal and life threatening to bacterial and fungal infections during routine procedures like elective surgery, C-sections, etc. Currently, a swift elevation in multidrug-resistant organisms (MDROs), like carbapenem-resistant New Delhi metallo-ß-lactamase (NDM)-producing Acinetobacter baumannii, Enterobacterales, extended-spectrum ß-lactamase (ESBL)-producing Klebsiella pneumoniae, methicillin-resistant Staphylococcus aureus (MRSA), multi-triazole-resistant Aspergillus fumigatus and pan-echinocandin-resistant Candida glabrata has been seen. Thereupon, the global outbreak of COVID-19 also offers some important ramification for developing antimicrobial drug resistance. This article aims to highlights episodes and aspects of AMR prevalence, impact of management and mismanagement of COVID-19 crisis, hospital settings, community, environment, and travel on the AMR during the current pandemic.


Subject(s)
COVID-19 , Influenza, Human , Methicillin-Resistant Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pandemics , Drug Resistance, Bacterial , Microbial Sensitivity Tests , SARS-CoV-2 , Klebsiella pneumoniae
5.
Biology (Basel) ; 11(12)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36552345

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) are a promising platform for their use in biomedical research, especially given their anticancer and antimicrobial activities. This work presents the synthesis of ZnO NPs doped with different amounts of rare-earth ions of ytterbium (Yb) and cerium (Ce) and the assessment of their anticancer and antimicrobial activities. The structural investigations indicated a hexagonal wurtzite structure for all prepared NPs. The particle size was reduced by raising the amount of Ce and Yb in ZnO. The anticancer capabilities of the samples were examined by the cell viability MTT assay. Post 48-h treatment showed a reduction in the cancer cell viability, which was x = 0.00 (68%), x = 0.01 (58.70%), x = 0.03 (80.94%) and x = 0.05 (64.91%), respectively. We found that samples doped with x = 0.01 and x = 0.05 of Yb and Ce showed a better inhibitory effect on HCT-116 cancer cells than unadded ZnO (x = 0.00). The IC50 for HCT-116 cells of Ce and Yb co-doped ZnO nanoparticles was calculated and the IC50 values were x = 0.01 (3.50 µg/mL), x = 0.05 (8.25 µg/mL), x = 0.00 (11.75 µg/mL), and x = 0.03 (21.50 µg/mL). The treatment-doped ZnO NPs caused apoptotic cell death in the HCT-116 cells. The nanoparticles showed inhibitory action on both C. albicans and E. coli. It can be concluded that doping ZnO NPs with Yb and Ce improves their apoptotic effects on cancer and microbial cells.

6.
Pharmaceutics ; 14(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36297684

ABSTRACT

Candida auris (C. auris), an emerging multidrug-resistant microorganism, with limited therapeutical options, is one of the leading causes of nosocomial infections. The current study includes 19 C. auris strains collected from King Fahd Hospital of the University and King Fahad Specialist Hospital in Dammam, identified by 18S rRNA gene and ITS region sequencing. Drug-resistance-associated mutations in ERG11, TAC1B and FUR1 genes were screened to gain insight into the pattern of drug resistance. Molecular identification was successfully achieved using 18S rRNA gene and ITS region and 5 drug-resistance-associated missense variants identified in the ERG11 (F132Y and K143R) and TAC1B (H608Y, P611S and A640V) genes of C. auris strains, grouped into 3 clades. The prophylactic and therapeutic application of hydrothermally synthesized Ag-silicalite-1 (Si/Ag ratio 25) nanomaterial was tested against the 3 clades of clinical C. auris strains. 4wt%Ag/TiZSM-5 prepared using conventional impregnation technique was used for comparative study, and nano formulations were characterized using different techniques. The antibiofilm activity of nanomaterials was tested by cell kill assay, scanning electron microscopy (SEM) and light microscopy. Across all the clades of C. auris strains, 4 wt%Ag/TiZSM-5 and Ag-silicalite-1 demonstrated a significant (p = 1.1102 × 10-16) inhibitory effect on the biofilm's survival rate: the lowest inhibition value was (10%) with Ag-silicalite-1 at 24 and 48 h incubation. A profound change in morphogenesis in addition to the reduction in the number of C.auris cells was shown by SEM and light microscopy. The presence of a high surface area and the uniform dispersion of nanosized Ag species displays enhanced anti-Candida activity, and therefore it has great potential against the emerging multidrug-resistant C. auris.

7.
Materials (Basel) ; 15(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35629533

ABSTRACT

This study aimed to fabricate nano-hydroxyapatite (nHA) grafted/non-grafted E-glass-fiber-based (nHA/EG) and E-glass fiber (EG) orthodontic retainers and to compare their properties with commercially available retainers. Stainless-steel (SS) retainers and everStick Ortho (EST) were used as control groups. The retainers were evaluated with Raman spectroscopy and bonded to bovine teeth. The samples were fatigued under cyclic loading (120,000 cycles) followed by static load testing. The failure behavior was evaluated under an optical microscope and scanning electron microscope. The strain growth on the orthodontic retainers was assessed (48h and 168h) by an adhesion test using Staphylococcus aureus and Candida albicans. The characteristic peaks of resin and glass fibers were observed, and the debonding force results showed a significant difference among all of the groups. SS retainers showed the highest bonding force, whereas nHA/EG retainers showed a non-significant difference from EG and EST retainers. SS retainers' failure mode occurred mainly at the retainer-composite interface, while breakage occurred in glass-fiber-based retainers. The strains' adhesion to EST and EG was reduced with time. However, it was increased with nHA/EG. Fabrication of nHA/EG retainers was successfully achieved and showed better debonding force compared to other glass-fiber-based groups, whereas non-linear behavior was observed for the strains' adhesion.

8.
Vaccines (Basel) ; 10(4)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35455349

ABSTRACT

Gastric cancer (GC) is a significant health concern worldwide, with a GLOBOCAN estimate of 1.08 million novel cases in 2020. It is the leading cause of disability-adjusted life years lost to cancer, with the fourth most common cancer in males and the fifth most common cancer in females. Strategies are pursued across the globe to prevent gastric cancer progression as a significant fraction of gastric cancers have been linked to various pathogenic (bacterial and viral) infections. Early diagnosis (in Asian countries), and non-invasive and surgical treatments have helped manage this disease with 5-year survival for stage IA and IB tumors ranging between 60% and 80%. However, the most prevalent aggressive stage III gastric tumors undergoing surgery have a lower 5-year survival rate between 18% and 50%. These figures point to a need for more efficient diagnostic and treatment strategies, for which the oncolytic viruses (OVs) appear to have some promise. OVs form a new therapeutic agent class that induces anti-tumor immune responses by selectively killing tumor cells and inducing systemic anti-tumor immunity. On the contrary, several oncogenic viruses have been shown to play significant roles in malignancy progression in the case of gastric cancer. Therefore, this review evaluates the current state of research and advances in understanding the dual role of viruses in gastric cancer.

9.
Microorganisms ; 10(4)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35456757

ABSTRACT

The human gut microbiome has been implicated in a host of bodily functions and their regulation, including brain development and cognition. Neuroinflammation is a relatively newer piece of the puzzle and is implicated in the pathogenesis of many neurological disorders. The microbiome of the gut may alter the inflammatory signaling inside the brain through the secretion of short-chain fatty acids, controlling the availability of amino acid tryptophan and altering vagal activation. Studies in Korea and elsewhere highlight a strong link between microbiome dynamics and neurocognitive states, including personality. For these reasons, re-establishing microbial flora of the gut looks critical for keeping neuroinflammation from putting the whole system aflame through probiotics and allotransplantation of the fecal microbiome. However, the numerosity of the microbiome remains a challenge. For this purpose, it is suggested that wherever possible, a fecal microbial auto-transplant may prove more effective. This review summarizes the current knowledge about the role of the microbiome in neuroinflammation and the various mechanism involved in this process. As an example, we have also discussed the autism spectrum disorder and the implication of neuroinflammation and microbiome in its pathogenesis.

10.
Front Immunol ; 12: 680845, 2021.
Article in English | MEDLINE | ID: mdl-34484179

ABSTRACT

The current coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome virus 2 (SARS-CoV-2), has resulted in a major global pandemic, causing extreme morbidity and mortality. Few studies appear to suggest a significant impact of gender in morbidity and mortality, where men are reported at a higher risk than women. The infectivity, transmissibility, and varying degree of disease manifestation (mild, modest, and severe) in population studies reinforce the importance of a number of genetic and epigenetic factors, in the context of immune response and gender. The present review dwells on several contributing factors such as a stronger innate immune response, estrogen, angiotensin-converting enzyme 2 gene, and microbiota, which impart greater resistance to the SARS-CoV-2 infection and disease progression in women. In addition, the underlying importance of associated microbiota and certain environmental factors in gender-based disparity pertaining to the mortality and morbidity due to COVID-19 in women has also been addressed.


Subject(s)
COVID-19/immunology , Gonadal Steroid Hormones , Healthcare Disparities , Immunity, Innate , SARS-CoV-2/immunology , COVID-19/epidemiology , COVID-19/mortality , Disease Progression , Female , Global Health , Humans , Male , Microbiota/immunology , Risk Factors , Sex Factors
11.
Pharmaceutics ; 13(7)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206751

ABSTRACT

The current study offers an efficient design of novel nanoparticle microspheres (MCs) using a hydrothermal approach. The Co0.5Ni0.5GaxFe2-xO4 (0.0 ≤ x ≤ 1.0) MCs were prepared by engineering the elements, such as cobalt (Co), nickel (Ni), iron (Fe), and gallium (Ga). There was a significant variation in MCs' physical structure and surface morphology, which was evaluated using energy dispersive X-ray analysis (EDX), X-ray diffractometer (XRD), high-resolution transmission electron microscopy (HR-TEM), and scanning electron microscope (SEM). The anti-proliferative activity of MCs was examined by MTT assay and DAPI staining using human colorectal carcinoma cells (HCT-116), human cervical cancer cells (HeLa), and a non-cancerous cell line-human embryonic kidney cells (HEK-293). Post 72 h treatment, MCs caused a dose dependent inhibition of growth and proliferation of HCT-116 and HeLa cells. Conversely, no cytotoxic effect was observed on HEK-293 cells. The anti-fungal action was assessed by the colony forming units (CFU) technique and SEM, resulting in the survival rate of Candida albicans as 20%, with severe morphogenesis, on treatment with MCs x = 1.0. These findings suggest that newly engineered microspheres have the potential for pharmaceutical importance, in terms of infectious diseases and anti-cancer therapy.

12.
Biomolecules ; 11(5)2021 05 08.
Article in English | MEDLINE | ID: mdl-34066897

ABSTRACT

In the present study, biocompatible manganese nanoparticles have been linked with zinc and iron molecules to prepare different derivatives of Mn0.5Zn0.5ErxYxFe2-2xO4 NPs (x = 0.02, 0.04, 0.06, 0.08, 0.10), using an ultrasonication approach. The structure, surface morphology, and chemical compositions of Mn0.5Zn0.5ErxYxFe2-2xO4 NPs were elucidated by X-ray diffractometer (XRD), High-resolution transmission electron microscopy (HR-TEM), scanning electron microscope (SEM), and Energy Dispersive X-Ray Analysis (EDX) techniques. The bioactivity of Mn0.5Zn0.5ErxYxFe2-2xO4 NPs on normal (HEK-293) and (HCT-116) colon cancer cell line was evaluated. The Mn0.5Zn0.5ErxYxFe2-2xO4 NPs treatment post 48 h resulted in a significant reduction in cells (via MTT assay, having an IC50 value between 0.88 µg/mL and 2.40 µg/mL). The specificity of Mn0.5Zn0.5ErxYxFe2-2xO4 NPs were studied by treating them on normal cells line (HEK-293). The results showed that Mn0.5Zn0.5ErxYxFe2-2xO4 NPs did not incur any effect on HEK-293, which suggests that Mn0.5Zn0.5ErxYxFe2-2xO4 NPs selectively targeted the colon cancerous cells. Using Candida albicans, antifungal activity was also studied by evaluating minimum inhibitory/fungicidal concentration (MIC/MFC) and the effect of nanomaterial on the germ tube formation, which exhibited that NPs significantly inhibited the growth and germ tube formation. The obtained results hold the potential to design nanoparticles that lead to efficient bioactivity.


Subject(s)
Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Metal Nanoparticles/administration & dosage , Neoplasms/drug therapy , Oxides/chemistry , Candida albicans/drug effects , Cell Line, Tumor , Erbium/chemistry , Humans , Manganese/chemistry , Metal Nanoparticles/chemistry , Neoplasms/metabolism , Neoplasms/pathology , Ultrasonic Waves , Yttrium/chemistry , Zinc/chemistry
13.
Saudi J Biol Sci ; 28(6): 3391-3398, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34121877

ABSTRACT

Globally, breast cancer is the most common type of cancer in females and is one of the leading causes of cancer death in women. The advancement in the targeted therapies and the slight understanding of the molecular cascades of the disease have led to small improvement in the rate of survival of breast cancer patients. However, metastasis and resistance to the current drugs still remain as challenges in the management of breast cancer patients. Metastasis, potentially, leads to failure of the available treatment, and thereby, makes the research on metastatic suppressors a high priority. Tumor metastasis suppressors are several genes and their protein products that have the capability of arresting the metastatic process without affecting the tumor formation. The metastasis suppressors KAI1 (also known as CD82) has been found to inhibit tumor metastasis in various types of solid cancers, including breast cancer. KAI1 was identified as a metastasis suppressor that inhibits the process of metastasis by regulating several mechanisms, including cell motility and invasion, induction of cell senescence, cell-cell adhesion and apoptosis. KAI1 is a member of tetraspanin membrane protein family. It interacts with other tetraspanins, chemokines and integrins to control diverse signaling pathways, which are crucial for protein trafficking and intracellular communication. It follows that better understanding of the molecular events of such genes is needed to develop prognostic biomarkers, and to identify specific therapies for breast cancer patients. This review aims to discuss the role of KAI1/CD82 as a prognosticator in breast cancer.

14.
Artif Cells Nanomed Biotechnol ; 49(1): 493-499, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34159846

ABSTRACT

Combining two or more nanoparticles is a promising approach. Previously we have reported synthesis of nanoparticles Dysprosium (Dy) substituted with manganese (Mn) zinc (Zn) by using ultrasonication method. The five different nanoparticles (NPs) Mn0.5Zn0.5DyxFe2-xO4 (x ≤ 0.1) have been structurally and morphologically characterized but there is no report on the biological application of these NPs. In the present study, we have examined the anti-cancer, anti-bacterial, and anti-fungal activities of Mn0.5Zn0.5DyxFe2-xO4 (x ≤ 0.1) NPs. Human colorectal carcinoma cells (HCT-116) were tested with different concentrations of NPs by using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. In addition, the impact of NPs was also examined on normal cells such as human embryonic kidney cells, HEK-293. After 48 h of treatment, Mn0.5Zn0.5DyxFe2-xO4 NPs (x = 0.02, 0.04 and 0.06) showed no inhibitory action on cancer cell's growth and proliferation, whereas Mn0.5Zn0.5DyxFe2-xO4 NPs (x = 0.08 and 0.1) showed profound inhibitory action on cancer cell's growth and proliferation. However, the treatment of Mn0.5Zn0.5DyxFe2-xO4 NPs on the normal cells (HEK-293) did not show cytotoxic or inhibitory action on HEK-293 cells. The treatment of Mn0.5Zn0.5DyxFe2-xO4 NPs (x ≤ 0.1) also inhibited both the bacteria (Escherichia coli ATCC35218 and Staphylococcus aureus) with lowest MIC and MBC values of 4 and 8 mg/mL and fungus (Candida albicans) with MIC and MFC values of 4 and 8 mg/mL on treatment with x = 0.08 and 0. 1.


Subject(s)
Manganese
15.
Saudi J Biol Sci ; 28(8): 4560-4568, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33935562

ABSTRACT

The human-to-human transmitted respiratory illness in COVID-19 affected by the pathogenic Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), which appeared in the last of December 2019 in Wuhan, China, and rapidly spread in many countries. Thereon, based on the urgent need for therapeutic molecules, we conducted in silico based docking and simulation molecular interaction studies on repurposing drugs, targeting SARS-CoV-2 spike protein. Further, the best binding energy of doxorubicin interacting with virus spike protein (PDB: 6VYB) was observed to be -6.38 kcal/mol and it was followed by exemestane and gatifloxacin. The molecular simulation dynamics analysis of doxorubicin, Reference Mean Square Deviation (RMSD), Root Mean Square fluctuation (RMSF), Radius of Gyration (Rg), and formation of hydrogen bonds plot interpretation suggested, a significant deviation and fluctuation of Doxorubicin-Spike RBD complex during the whole simulation period. The Rg analysis has stated that the Doxorubicin-Spike RBD complex was stable during 15,000-35,000 ps MDS. The results have suggested that doxorubicin could inhibit the virus spike protein and prevent the access of the SARS-CoV-2 to the host cell. Thus, in-vitro/in-vivo research on these drugs could be advantageous to evaluate significant molecules that control the COVID-19 disease.

16.
Medicina (Kaunas) ; 57(2)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33673004

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global pandemic and is posing a serious challenge to mankind. As per the current scenario, there is an urgent need for antiviral that could act as a protective and therapeutic against SARS-CoV-2. Previous studies have shown that SARS-CoV-2 is much similar to the SARS-CoV bat that occurred in 2002-03. Since it is a zoonotic virus, the exact source is still unknown, but it is believed bats may be the primary reservoir of SARS-CoV-2 through which it has been transferred to humans. In this review, we have tried to summarize some of the approaches that could be effective against SARS-CoV-2. Firstly, plants or plant-based products have been effective against different viral diseases, and secondly, plants or plant-based natural products have the minimum adverse effect. We have also highlighted a few vitamins and minerals that could be beneficial against SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , Biological Products/therapeutic use , COVID-19 Drug Treatment , Nutrients/therapeutic use , SARS-CoV-2/drug effects , Virus Diseases/drug therapy , Animals , Chiroptera/virology , Humans
17.
Saudi J Biol Sci ; 28(3): 1795-1800, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33732064

ABSTRACT

The overproduction of reactive oxygen species (ROS) causes oxidative stress, such as Hydrogen peroxide (H2O2). Acute oxidative stress is one of the main reasons for cell death. In this study, the antioxidant properties of vanillic acid- a polyphenolic compound was evaluated. Therefore, this study aims to check the effectiveness of vanillic acid in H2O2-induced oxidative stress in D. Mel-2 cell line. The efficacy was determined by biochemical tests to check the ROS production. The cytotoxicity of H2O2 and vanillic acid was checked by MTT assay. The DNA fragmentation was visualized by gel electrophoresis. Protein biomarkers of oxidative stress were analyzed by western blotting. The results depict a promising antioxidant effect of vanillic acid. The IC50 value of vanillic acid and H2O2 was found 250 µg/ml and 125 µg/ml, respectively. The catalase activity, SOF, GPx, and PC was seen less in H2O2 treated group compared with the control and vanillic acid treated group. However, the TBRAS activity was hight in H2O2 treated group. The effect of H2O2 on DNA fragmentation was high as compared with vanillic acid-treated cells. The protein expression of Hsp70, IL-6 and iNOS was seen significant in a vanillic acid-treated group as compared with H2O2 treated group. These results reinforce that at low concentration, vanillic acid could be used as an antioxidant agent in the food and pharmaceutical industries.

18.
Heliyon ; 7(1): e06105, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33553761

ABSTRACT

Gut microbiota has become an issue of great importance recently due to its major role in autism spectrum disorder (ASD). Over the past three decades, there has been a sustained research activity focused to explain the actual mechanism by which gut microbiota triggers/develops autism. Several genetic and epigenetic factors are involved in this disorder, with epigenetics being the most active area of research. Although the constant investigation and advancements, epigenetic implications in ASD still need a deeper functional/causal analysis. In this review, we describe the major gut microbiota metabolites and how they induce epigenetic changes in ASD along with interactions through the gut-brain axis.

19.
Pharmacol Res ; 164: 105364, 2021 02.
Article in English | MEDLINE | ID: mdl-33285229

ABSTRACT

In the past decades, the branch of complementary and alternative medicine based therapeutics has gained considerable attention worldwide. Pharmacological efficacy of various traditional medicinal plants, their products and/or product derivatives have been explored on an increasing scale. Tanshinone IIA (Tan IIA) is a pharmacologically active lipophilic component of Salvia miltiorrhiza extract. Tan IIA shares a history of high repute in Traditional Chinese Medicine. Reckoning with these, the present review collates the pharmacological properties of Tan IIA with a special emphasis on its therapeutic potential against diverse diseases including cardiovascular diseases, cerebrovascular diseases, cancer, diabetes, obesity and neurogenerative diseases. Further, possible applications of various therapeutic preparations of Tan IIA were discussed with special emphasis on nano-based drug delivery formulations. Considering the tremendous advancement in the field of nanomedicine and the therapeutic potential of Tan IIA, the convergence of these two aspects can be foreseen with great promise in clinical application.


Subject(s)
Abietanes/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Antioxidants/administration & dosage , Animals , Drug Delivery Systems , Drug Therapy, Combination , Humans
20.
Microrna ; 9(5): 363-372, 2020.
Article in English | MEDLINE | ID: mdl-33297927

ABSTRACT

AIM: Apart from the modifiable risk factors, genetic factors are believed to influence the outcome of Coronary Artery Diseases (CAD). Under the genetic factors, miRNA polymorphisms, namely Hsa-miR-146a-5p (rs2910164) have become an important tool to study the mechanism that underlies the pathogenesis of this disease. Therefore, we investigated the association of miR-146a gene variations with susceptibility of coronary artery diseases. METHODOLOGY: This study was conducted on 100 CAD patients and 117 matched healthy individuals. Genotyping of the Hsa-miR-146a-5p C>G gene variation was performed by using Amplification Refractory Mutation System PCR method (ARMS-PCR). RESULTS: The distribution of Hsa-miR-146a-5p rs2910164 C>G genotypes observed between patients and controls was significantly different (P=0.048). Moreover, the frequency of G allele (fG) was found to be significantly higher among patients than in controls (0.36 vs. 0.25). Our findings showed that the Hsa-miR-146a-5p C>G variant was associated with an increased risk of CAD in codominant inheritance model CC vs. CG genotype (OR = 1.84, 95% CI, 1.02-3.31; p=0.040) and (OR = 3.18, 95% CI, 1.02-9.9; p=0.045) for CC vs. GG genotype in dominant inheritance model. Whereas the G allele significantly increased the risk of coronary artery disease (OR =1,81, 95% CI, 1.18-2.78; p=0.006) compared to C allele. Taken together, these results demonstrated that miR-146a/rs2910164 is associated with susceptibility to coronary artery disease, providing novel insights into the genetic etiology and underlying biology of coronary artery disease. CONCLUSION: Our findings indicated that Hsa-miR-146a-5p rs2910164 GG genotype and G allele are associated with increased susceptibility to Coronary Artery Disease. A larger sample size can be the key to progress in establishing the genetic co-relation of miRNA gene polymorphisms and cardiovascular diseases.


Subject(s)
Coronary Artery Disease/genetics , Genotyping Techniques/methods , MicroRNAs/genetics , Polymorphism, Single Nucleotide , Case-Control Studies , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , MicroRNAs/chemistry , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...