Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35889688

ABSTRACT

The development of smart, efficient and multifunctional material systems for diseases treatment are imperative to meet current and future health challenges. Nanomaterials with theranostic properties have offered a cost effective and efficient solution for disease treatment, particularly, metal/oxide based nanotheranostic systems already offering therapeutic and imaging capabilities for cancer treatment. Nanoparticles can selectively generate/scavenge ROS through intrinsic or external stimuli to augment/diminish oxidative stress. An efficient treatment requires higher oxidative stress/toxicity in malignant disease, with a minimal level in surrounding normal cells. The size, shape and surface properties of nanoparticles are critical parameters for achieving a theranostic function in the microenvironment. In the last decade, different strategies for the synthesis of biocompatible theranostic nanostructures have been introduced. The exhibition of therapeutics properties such as selective reactive oxygen species (ROS) scavenging, hyperthermia, antibacterial, antiviral, and imaging capabilities such as MRI, CT and fluorescence activity have been reported in a variety of developed nanosystems to combat cancer, neurodegenerative and emerging infectious diseases. In this review article, theranostic in vitro behaviour in relation to the size, shape and synthesis methods of widely researched and developed nanosystems (Au, Ag, MnOx, iron oxide, maghemite quantum flakes, La2O3-x, TaOx, cerium nanodots, ITO, MgO1-x) are presented. In particular, ROS-based properties of the nanostructures in the microenvironment for cancer therapy are discussed. The provided overview of the biological behaviour of reported metal-based nanostructures will help to conceptualise novel designs and synthesis strategies for the development of advanced nanotheranostic systems.

2.
Sci Technol Adv Mater ; 23(1): 169-188, 2022.
Article in English | MEDLINE | ID: mdl-35422673

ABSTRACT

Lithium metal batteries have recently gained tremendous attention owing to their high energy capacity compared to other rechargeable batteries. Nevertheless, lithium (Li) dendritic growth causes low Coulombic efficiency, thermal runaway, and safety issues, all of which hinder the practical application of Li metal as an anodic material. In this review, the failure mechanisms of Li metal anode are described according to its infinite volume changes, unstable solid electrolyte interphase, and Li dendritic growth. The fundamental models that describe the Li deposition and dendritic growth, such as the thermodynamic, electrodeposition kinetics, and internal stress models are summarized. From these considerations, porous carbon-based frameworks have emerged as a promising strategy to resolve these issues. Thus, the main principles of utilizing these materials as a Li metal host are discussed. Finally, we also focus on the recent progress on utilizing one-, two-, and three-dimensional carbon-based frameworks and their composites to highlight the future outlook of these materials.

3.
J Mater Chem B ; 9(29): 5805-5817, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34231637

ABSTRACT

In this work, size- and shape-controlled two-dimensional (2D) superparamagnetic maghemite (γ-Fe2O3) quantum flakes (MQFs) with high surface area and mesoporosity were prepared by facile hydrothermal synthesis for biological applications. These quantum flakes exhibited superparamagnetic behaviours over a wide temperature range of 75-950 K with high saturation magnetization of Ms - 23 emu g-1 and a lower coercivity of Hc - 6.1 Oe. MQFs also demonstrated a good colloidal stability and a positively charged flake surface. Selective toxicity dependent upon selective ROS scavenging/generation and cellular MQF uptake towards non-malignant human keratinocyte (HaCaT) and malignant melanoma (A357) and human breast cancer (MDA-MB 231) cell lines were witnessed. An increased ROS concentration resulted due to the peroxidase-like activity of MQFs in malignant cells. In contrast, ROS scavenging was observed in non-malignant cells due to dominant catalase-like activity. In vitro fluorescence properties added the diagnostic ability to the ambit of MQFs. Furthermore, the therapeutic efficiency could be significantly enhanced by the hyperthermic (25-47 °C) ability of MQF in cancerous cells. Our findings reveal the novel theranostic MQF structure with immense cancer therapeutic potential via augmentation of ROS generation by hyperthermia in a selective microenvironment.


Subject(s)
Antineoplastic Agents/pharmacology , Ferric Compounds/pharmacology , Reactive Oxygen Species/metabolism , Theranostic Nanomedicine , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carbon/chemistry , Cell Survival/drug effects , Cells, Cultured , Drug Screening Assays, Antitumor , Ferric Compounds/chemical synthesis , Ferric Compounds/chemistry , Humans , Microscopy, Fluorescence , Particle Size , Surface Properties
4.
J Mater Chem B ; 8(18): 4016-4028, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32347289

ABSTRACT

The cytotoxic and genotoxic effects of titanium dioxide (TiO2) nanoparticles when exposed to ultraviolet (UV) radiation, particularly wavelengths between 320-400 nm, has raised concern over their safe use in health and cosmetic related products such as sunscreens. Cerium dioxide (CeO2) nanoparticles have been demonstrated to display biocompatible properties and antioxidant activity due to redox cycling of the Ce3+/Ce4+ oxidation states. In this work, CeO2/TiO2 nanocomposites were prepared through a standard precipitation method at atomic concentrations (at%) of Ce relative to Ti of 2.5, 5 and 10 at%, with the aim of reducing the photocatalytic activity of the core TiO2 nanoparticles and improve biocompatibility. The UV absorptive properties of the nanocomposite samples revealed excellent absorbance across the UV region as compared to pristine TiO2 and CeO2. Furthermore, a drastic reduction in the photocatalysed decomposition of crystal violet, when in the presence of the nanocomposite samples, under both UV and solar simulated light was observed compared to the highly photoactive pristine TiO2. An optimal CeO2 nanodot loading, displaying both high UV attenuation and low photocatalytic performance was determined at 5 at% and further in vitro biological testing revealed minimal impact on the cell viability of the human keratinocyte cell line (HaCaT) over a 24 h period with and without prior exposure to UV irradiation. In contrast, pristine TiO2 nanoparticles induced toxicity to HaCaT cells with prior UV exposure before incubation, particularly at a dosage of 100 mg L-1. Our findings demonstrate the effectiveness of CeO2 nanodots in improving biocompatibility and its potential as a coating material for active inorganic UV filters.


Subject(s)
Biocompatible Materials/pharmacology , Cerium/pharmacology , Keratinocytes/drug effects , Nanoparticles/chemistry , Titanium/pharmacology , Biocompatible Materials/chemistry , Catalysis , Cell Line , Cell Survival/drug effects , Cerium/chemistry , Humans , Keratinocytes/cytology , Particle Size , Photochemical Processes , Surface Properties , Titanium/chemistry , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...