Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 12(1): 11484, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35798787

ABSTRACT

In solar heating, ventilation, and air conditioning (HVAC), communications are designed to create new 3D mathematical models that address the flow of rotating Sutterby hybrid nanofluids exposed to slippery and expandable seats. The heat transmission investigation included effects such as copper and graphene oxide nanoparticles, as well as thermal radiative fluxing. The activation energy effect was used to investigate mass transfer with fluid concentration. The boundary constraints utilized were Maxwell speed and Smoluchowksi temperature slippage. With the utilization of fitting changes, partial differential equations (PDEs) for impetus, energy, and concentricity can be decreased to ordinary differential equations (ODEs). To address dimensionless ODEs, MATLAB's Keller box numerical technique was employed. Graphene oxide Copper/engine oil (GO-Cu/EO) is taken into consideration to address the performance analysis of the current study. Physical attributes, for example, surface drag coefficient, heat move, and mass exchange are mathematically processed and shown as tables and figures when numerous diverse factors are varied. The temperature field is enhanced by an increase in the volume fraction of copper and graphene oxide nanoparticles, while the mass fraction field is enhanced by an increase in activation energy.

3.
J Appl Biomater Funct Mater ; 20: 22808000221104004, 2022.
Article in English | MEDLINE | ID: mdl-35787191

ABSTRACT

Current research underscores entropy investigation in an infiltrating mode of Sutterby nanofluid (SNF) stream past a dramatically expanding flat plate that highlights Parabolic Trough Solar Collector (PTSC). Satisfactory likeness factors are utilized to change halfway differential conditions (PDEs) to nonlinear conventional differential conditions (ODEs) along with relating limit requirements. A productive Keller-box system is locked in to achieve approximated arrangement of decreased conventional differential conditions. In the review, two sorts of nanofluids including Copper-sodium alginate (Cu-SA) and Gold-sodium alginate (Au-SA) are dissected. Results are graphically plotted as well as talked about in actual viewpoints. As indicated by key discoveries, an improvement in Brinkmann, as well as Reynolds number, brings about expanding the general framework entropy. Sutterby nanofluid boundary improves heat rate in PTSC. Additionally, Copper-sodium alginate nanofluid is detected as a superior thermal conductor than Gold-sodium alginate nanofluid. Further to that, the reported breakthroughs are beneficial to updating extremely bright lighting bulbs, heating and cooling machinery, fiber required to generate light, power production, numerous boilers, and other similar technologies.


Subject(s)
Alginates , Metal Nanoparticles , Copper , Gold , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...