Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 19546, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37945628

ABSTRACT

High frequency reporting of energy consumption data in smart grids can be used to infer sensitive information regarding the consumer's life style and poses serious security and privacy threats. Differential privacy (DP) based privacy models for smart grids ensure privacy when analysing energy consumption data for billing and load monitoring. However, DP models for smart grids are vulnerable to collusion attack where an adversary colludes with malicious smart meters and un-trusted aggregator in order to get private information from other smart meters. We first show the vulnerability of DP based privacy model for smart grids against collusion attacks to establish the need of a collusion resistant privacy model. Then, we propose an Enhanced Differential Private Noise Cancellation Model for Load Monitoring and Billing for Smart Meters (E-DPNCT) which not only provides resistance against collusion attacks but also protects the privacy of the smart grid data while providing accurate billing and load monitoring. We use differential privacy with a split noise cancellation protocol with multiple master smart meters (MSMs) to achieve collusion resistance. We propose an Enhanced Differential Private Noise Cancellation Model for Load Monitoring and Billing for Smart Meters (E-DPNCT) to protect the privacy of the smart grid data using a split noise cancellation protocol with multiple master smart meters (MSMs) to provide accurate billing and load monitoring and resistance against collusion attacks. We did extensive comparison of our E-DPNCT model with state of the art attack resistant privacy preserving models such as EPIC for collusion attack. We simulate our E-DPNCT model with real time data which shows significant improvement in privacy attack scenarios. Further, we analyze the impact of selecting different sensitivity parameters for calibrating DP noise over the privacy of customer electricity profile and accuracy of electricity data aggregation such as load monitoring and billing.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2049-2052, 2022 07.
Article in English | MEDLINE | ID: mdl-36086605

ABSTRACT

Biomedical image datasets can be imbalanced due to the rarity of targeted diseases. Generative Adversarial Networks play a key role in addressing this imbalance by enabling the generation of synthetic images to augment datasets. It is important to generate synthetic images that incorporate a diverse range of features to accurately represent the distribution of features present in the training imagery. Furthermore, the absence of diverse features in synthetic images can degrade the performance of machine learning classifiers. The mode collapse problem impacts Generative Adversarial Networks' capacity to generate diversified images. Mode collapse comes in two varieties: intra-class and inter-class. In this paper, the intra-class mode collapse problem is investigated, and its subsequent impact on the diversity of synthetic X-ray images is evaluated. This work contributes an empirical demonstration of the benefits of integrating the adaptive input-image normalization for the Deep Convolutional GAN to alleviate the intra-class mode collapse problem. Results demonstrate that the DCGAN with adaptive input-image normalization outperforms DCGAN with un-normalized X-ray images as evident by the superior diversity scores.


Subject(s)
Machine Learning , X-Rays
3.
Comput Methods Programs Biomed ; 157: 39-47, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29477434

ABSTRACT

BACKGROUND AND OBJECTIVE: The early diagnosis of stomach cancer can be performed by using a proper screening procedure. Chromoendoscopy (CH) is an image-enhanced video endoscopy technique, which is used for inspection of the gastrointestinal-tract by spraying dyes to highlight the gastric mucosal structures. An endoscopy session can end up with generating a large number of video frames. Therefore, inspection of every individual endoscopic-frame is an exhaustive task for the medical experts. In contrast with manual inspection, the automated analysis of gastroenterology images using computer vision based techniques can provide assistance to endoscopist, by finding out abnormal frames from the whole endoscopic sequence. METHODS: In this paper, we have presented a new feature extraction method named as Gabor-based gray-level co-occurrence matrix (G2LCM) for computer-aided detection of CH abnormal frames. It is a hybrid texture extraction approach which extracts a combination both local and global texture descriptors. Moreover, texture information of a CH image is represented by computing the gray level co-occurrence matrix of Gabor filters responses. Furthermore, the second-order statistics of these co-occurrence matrices are computed to represent images' texture. RESULTS: The obtained results show the possibility to correctly classifying abnormal from normal frames, with sensitivity, specificity, accuracy, and area under the curve as 91%, 82%, 87% and 0.91 respectively, by using a support vector machine classifier and G2LCM texture features. CONCLUSION: It is apparent from results that the proposed system can be used for providing aid to the gastroenterologist in the screening of the gastric tract. Ultimately, the time taken by an endoscopic procedure will be sufficiently reduced.


Subject(s)
Diagnosis, Computer-Assisted , Gastroscopy/methods , Image Enhancement/methods , Stomach Neoplasms/diagnosis , Algorithms , Computer Simulation , Early Detection of Cancer , Humans , Image Interpretation, Computer-Assisted/methods , Sensitivity and Specificity , Support Vector Machine
4.
Comput Biol Med ; 88: 84-92, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28700903

ABSTRACT

Computer-aided analysis of clinical pathologies is a challenging task in the field of medical imaging. Specifically, the detection of abnormal regions in the frames collected during an endoscopic session is difficult. The variations in the conditions of image acquisition, such as field of view or illumination modification, make it more demanding. Therefore, the design of a computer-assisted diagnostic system for the recognition of gastric abnormalities requires features that are robust to scale, rotation, and illumination variations of the images. Therefore, this study focuses on designing a set of texture descriptors based on the Gabor wavelets that will cope with certain image dynamics. The proposed features are extracted from the images and utilized for the classification of the chromoendoscopy (CH) frames into normal and abnormal categories. Moreover, to attain a higher accuracy, an optimized subset of descriptors is selected through the genetic algorithm. The results obtained using the proposed features are compared with other existing texture descriptors (e.g., local binary pattern and homogeneous texture descriptors). Furthermore, the selected features are used to train the support vector machine (SVM), naive Bayes (NB) algorithm, k-nearest neighbor algorithm, linear discriminant analysis, and ensemble tree classifier. The performance of these state-of-the-art classifiers for different texture descriptors is compared based on the accuracy, sensitivity, specificity, and area under the curve (AUC) derived by using the CH images. The classification results reveal that the SVM classifier achieves 90.0% average accuracy and 0.93 AUC when it is employed with an optimized set of features obtained by using a genetic algorithm.


Subject(s)
Algorithms , Endoscopy/methods , Image Interpretation, Computer-Assisted/methods , Gastroscopy , Humans , Models, Genetic , ROC Curve , Stomach/diagnostic imaging , Stomach/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...