Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(7): 5538-5566, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38513086

ABSTRACT

Unlocking novel E3 ligases for use in heterobifunctional PROTAC degraders is of high importance to the pharmaceutical industry. Over-reliance on the current suite of ligands used to recruit E3 ligases could limit the potential of their application. To address this, potent ligands for DCAF15 were optimized using cryo-EM supported, structure-based design to improve on micromolar starting points. A potent binder, compound 24, was identified and subsequently conjugated into PROTACs against multiple targets. Following attempts on degrading a number of proteins using DCAF15 recruiting PROTACs, only degradation of BRD4 was observed. Deconvolution of the mechanism of action showed that this degradation was not mediated by DCAF15, thereby highlighting both the challenges faced when trying to expand the toolbox of validated E3 ligase ligands for use in PROTAC degraders and the pitfalls of using BRD4 as a model substrate.


Subject(s)
Nuclear Proteins , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Nuclear Proteins/metabolism , Proteolysis , Transcription Factors/metabolism , Ligands
2.
ACS Med Chem Lett ; 14(12): 1882-1890, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38116431

ABSTRACT

Precise length, shape, and linker attachment points are all integral components to designing efficacious proteolysis targeting chimeras (PROTACs). Due to the synthetic complexity of these heterobifunctional degraders and the difficulty of computational modeling to aid PROTAC design, the exploration of structure-activity relationships remains mostly empirical, which requires a significant investment of time and resources. To facilitate rapid hit finding, we developed capabilities for PROTAC parallel synthesis and purification by harnessing an array of preformed E3-ligand-linker intermediates. In the next iteration of this approach, we developed a rapid, nanomole-scale PROTAC synthesis methodology using amide coupling that enables direct screening of nonpurified reaction mixtures in cell-based degradation assays, as well as logD and EPSA measurements. This approach greatly expands and accelerates PROTAC SAR exploration (5 days instead of several weeks) as well as avoids laborious and solvent-demanding purification of the reaction mixtures, thus making it an economical and more sustainable methodology for PROTAC hit finding.

3.
Stem Cell Rev Rep ; 12(1): 90-104, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26385115

ABSTRACT

Human hepatocytes display substantial functional inter-individual variation regarding drug metabolizing functions. In order to investigate if this diversity is mirrored in hepatocytes derived from different human pluripotent stem cell (hPSC) lines, we evaluated 25 hPSC lines originating from 24 different donors for hepatic differentiation and functionality. Homogenous hepatocyte cultures could be derived from all hPSC lines using one standardized differentiation procedure. To the best of our knowledge this is the first report of a standardized hepatic differentiation procedure that is generally applicable across a large panel of hPSC lines without any adaptations to individual lines. Importantly, with regard to functional aspects, such as Cytochrome P450 activities, we observed that hepatocytes derived from different hPSC lines displayed inter-individual variation characteristic for primary hepatocytes obtained from different donors, while these activities were highly reproducible between repeated experiments using the same line. Taken together, these data demonstrate the emerging possibility to compile panels of hPSC-derived hepatocytes of particular phenotypes/genotypes relevant for drug metabolism and toxicity studies. Moreover, these findings are of significance for applications within the regenerative medicine field, since our stringent differentiation procedure allows the derivation of homogenous hepatocyte cultures from multiple donors which is a prerequisite for the realization of future personalized stem cell based therapies.


Subject(s)
Cell Culture Techniques/standards , Culture Media/pharmacology , Cytochrome P-450 Enzyme System/genetics , Hepatocytes/drug effects , Pluripotent Stem Cells/drug effects , Cell Differentiation/drug effects , Cell Line , Cytochrome P-450 Enzyme System/metabolism , Gene Expression , Hepatocytes/cytology , Hepatocytes/enzymology , Humans , Inactivation, Metabolic/genetics , Isoenzymes/genetics , Isoenzymes/metabolism , Karyotyping , Organ Specificity , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/enzymology , Primary Cell Culture , Reproducibility of Results
4.
Biochem Pharmacol ; 86(5): 691-702, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23856292

ABSTRACT

Human embryonic and induced pluripotent stem cell-derived hepatocytes (hESC-Hep and hiPSC-Hep) have the potential to provide relevant human in vitro model systems for toxicity testing and drug discovery studies. In this study, the expression and function of important drug metabolizing cytochrome P450 (CYP) enzymes and transporter proteins in hESC-Hep and hiPSC-Hep were compared to cryopreserved human primary hepatocytes (hphep) and HepG2 cells. Overall, CYP activities in hESC-Hep and hiPSC-Hep were much lower than in hphep cultured for 4 h, but CYP1A and 3A activities were comparable to levels in hphep cultured for 48h (CYP1A: 35% and 26% of 48 h hphep, respectively; CYP3A: 80% and 440% of 48 h hphep, respectively). Importantly, in hESC-Hep and hiPSC-Hep, CYP activities were stable or increasing for at least one week in culture which was in contrast to the rapid loss of CYP activities in cultured hphep between 4 and 48 h after plating. With regard to transporters, in hESC-Hep and hiPSC-Hep, pronounced NTCP activity (17% and 29% of 4 h hphep, respectively) and moderate BSEP activity (6% and 8% of 4 h hphep, respectively) were observed. Analyses of mRNA expression and immunocytochemistry supported the observed CYP and transporter activities and showed expression of additional CYPs and transporters. In conclusion, the stable expression and function of CYPs and transporters in hESC-Hep and hiPSC-Hep for at least one week opens up the possibility to reproducibly perform long term and extensive studies, e.g. chronic toxicity testing, in a stem cell-derived hepatic system.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Embryonic Stem Cells/metabolism , Hepatocytes/metabolism , Induced Pluripotent Stem Cells/metabolism , Membrane Transport Proteins/metabolism , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Cell Line , Cytochrome P-450 Enzyme System/genetics , Hepatocytes/enzymology , Humans , Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Organic Cation Transporter 1/genetics , Organic Cation Transporter 1/metabolism , Real-Time Polymerase Chain Reaction
5.
J Biotechnol ; 122(4): 511-20, 2006 Apr 20.
Article in English | MEDLINE | ID: mdl-16324761

ABSTRACT

Human embryonic stem cells (hESC) are isolated as clusters of cells from the inner cell mass of blastocysts and thus should formally be considered as heterogeneous cell populations. Homogenous hESC cultures can be obtained through subcloning. Here, we report the clonal derivation and characterization of two new hESC lines from the parental cell line SA002 and the previously clonally derived cell line AS034.1, respectively. The hESC line SA002 was recently reported to have an abnormal karyotype (trisomy 13), but within this population of cells we observed rare individual cells with an apparent normal karyotype. At a cloning efficiency of 5%, we established 33 subclones from SA002, out of which one had a diploid karyotype and this subline was designated SA002.5. From AS034.1 we established one reclone designated AS034.1.1 at a cloning efficiency of 0.1%. These two novel sublines express cell surface markers indicative of undifferentiated hESC (SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81), Oct-4, alkaline phosphatase, and they display high telomerase activity. In addition, the cells are pluripotent and form derivatives of all three embryonic germ layers in vitro as well as in vivo. These results, together with the clonal character of SA002.5 and AS034.1.1 make these homogenous cell populations very useful for hESC based applications in drug development and toxicity testing. In addition, the combination of the parental trisomic hESC line SA002 and the diploid subclone SA002.5 provides a unique experimental system to study the molecular mechanisms underlying the pathologies associated with trisomy 13.


Subject(s)
Cell Line/metabolism , Embryo, Mammalian/cytology , Pluripotent Stem Cells/cytology , Biomarkers , Cell Differentiation , Cell Line/cytology , Cytogenetic Analysis , Humans , In Vitro Techniques , Karyotyping , Pluripotent Stem Cells/metabolism , Telomerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...