Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 11(8)2019 Aug 18.
Article in English | MEDLINE | ID: mdl-31426592

ABSTRACT

The flammability of synthetic thermoplastic polymers has been recognized as an increasingly important safety problem. The goal of this study was to evaluate a green and safe fire-retardant system comprising of cellulose nanocrystals (CNC) and zinc oxide nanoparticles (ZnO). CNCs coated with nano ZnO were incorporated in the high-density polyethylene polymer (HDPE) matrix at different concentrations. Fire testing results of different formulations of HDPE containing 0.4 to 1.0% zinc oxide coated CNC exhibited a substantial decrease in the average mass loss, peak heat release rate and total smoke release. The time to ignition exhibited a positive correlation with CNC-ZnO concentration. Modest improvement in the flexural strength and moduli of composites was noticed validating no adverse effects of CNC-ZnO complex. The transmission electron microscopy further confirmed dispersion of nanoparticles as well as the presence of some nanoparticle aggregates in the matrix. The uniform dispersion of CNC-ZnO complex is expected to further improve fire and mechanical properties of polymer.

2.
Polymers (Basel) ; 11(1)2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30960042

ABSTRACT

Biopolymers are an emerging class of materials being widely pursued due to their ability to degrade in short periods of time. Understanding and evaluating the recyclability of biopolymers is paramount for their sustainable and efficient use in a cost-effective manner. Recycling has proven to be an important solution, to control environmental and waste management issues. This paper presents the first recycling assessment of Solanyl, Bioflex, polylactic acid (PLA) and PHBV using a melt extrusion process. All biopolymers were subjected to five reprocessing cycles. The thermal and mechanical properties of the biopolymers were investigated by GPC, TGA, DSC, mechanical test, and DMA. The molecular weights of Bioflex and Solanyl showed no susceptible effect of the recycling process, however, a significant reduction was observed in the molecular weight of PLA and PHBV. The inherent thermo-mechanical degradation in PHBV and PLA resulted in 20% and 7% reduction in storage modulus, respectively while minimal reduction was observed in the storage modulus of Bioflex and Solanyl. As expected from the Florry-Fox equation, recycled PLA with a high reduction in molecular weight (78%) experienced 9% reduction in glass transition temperature. Bioflex and Solanyl showed 5% and 2% reduction in molecular weight and experienced only 2% reduction in glass transition temperature. These findings highlight the recyclability potential of Bioflex and Solanyl over PLA and PHBV.

SELECTION OF CITATIONS
SEARCH DETAIL
...