Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
Add more filters










Publication year range
1.
Chemistry ; 29(44): e202300987, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37229593

ABSTRACT

Hinge motion is observed in macrocyclic, mortise-type molecular hinges using variable temperature NMR spectroscopy. The data is consistent with dynamic hinging from a folded-to-extended-to-folded enantiomeric state. Crystallographic and solution structures of the folded states are reported. Chemical shift predictions derived from crystallographic data corroborate fully revolute hinge motion. The rate of hinging is affected by steric congestion at the hinge axis. A macrocycle containing glycine, 1, hinges faster than one comprising aminoisobutyric acid, 2. The free energies of activation, ΔG≠ , for 1 and 2 were determined to be 13.3±0.3 kcal/mol and 16.3±0.3 kcal/mol, respectively. This barrier is largely independent of solvent across those surveyed (CD3 OD, CD3 CN, DMSO-d6 , pyridine-d5 , D2 O). Experiment and computation predict energy barriers that are consistent with disruption of an intramolecular network of hydrogen bonds. DFT calculations reveal a pathway for hinge motion.

2.
J Org Chem ; 88(5): 2692-2702, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36780253

ABSTRACT

Experiment and computation are used to develop a model to rapidly predict solution structures of macrocycles sharing the same Murcko framework. These 24-atom triazine macrocycles result from the quantitative dimerization of identical monomers presenting a hydrazine group and an acetal tethered to an amino acid linker. Monomers comprising glycine and the ß-branched amino acids threonine, valine, and isoleucine yield macrocycles G-G, T-T, V-V, and I-I, respectively. Elements common to all members of the framework include the efficiency of macrocyclization (quantitative), the solution- and solid-state structures (folded), the site of protonation (opposite the auxiliary dimethylamine group), the geometry of the hydrazone (E), the C2 symmetry of the subunits (conserved), and the rotamer state adopted. In aggregate, the data reveal metrics predictive of the three-dimensional solution structure that derive from the fingerprint region of the 1D 1H spectrum and a network of rOes from a single resonance. The metrics also afford delineation of more nuanced structural features that allow subpopulations to be identified among the members of the framework. Well-tempered metadynamics provides free energy surfaces and population distributions of these macrocycles. The areas of the free energy surface decrease with increasing steric bulk (G-G > V-V ∼ T-T > I-I). In addition, the surfaces are increasingly isoenergetic with decreasing steric bulk (G-G > V-V ∼ T-T > I-I).


Subject(s)
Amino Acids , Valine , Molecular Conformation , Isoleucine , Threonine
3.
Chem Sci ; 13(45): 13368-13386, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36507162

ABSTRACT

The diphosphine complexes cis- or trans-[upper bond 1 start]PtCl2(P((CH2) n )3P[upper bond 1 end]) (n = b/12, c/14, d/16, e/18) are demetalated by MC[triple bond, length as m-dash]X nucleophiles to give the title compounds (P((CH2) n )3)P (3b-e, 91-71%). These "empty cages" react with PdCl2 or PtCl2 sources to afford trans-[upper bond 1 start]MCl2(P((CH2) n )3P[upper bond 1 end]). Low temperature 31P NMR spectra of 3b and c show two rapidly equilibrating species (3b, 86 : 14; 3c, 97 : 3), assigned based upon computational data to in,in (major) and out,out isomers. These interconvert by homeomorphic isomerizations, akin to turning articles of clothing inside out (3b/c: ΔH ‡ 7.3/8.2 kcal mol-1, ΔS ‡ -19.4/-11.8 eu, minor to major). At 150 °C, 3b, c, e epimerize to (60-51) : (40-49) mixtures of (in,in/out,out) : in,out isomers, which are separated via the bis(borane) adducts 3b, c, e·2BH3. The configurational stabilities of in,out-3b, c, e preclude phosphorus inversion in the interconversion of in,in and out,out isomers. Low temperature 31P NMR spectra of in,out-3b, c reveal degenerate in,out/out,in homeomorphic isomerizations (ΔG ‡ Tc 12.1, 8.5 kcal mol-1). When (in,in/out,out)-3b, c, e are crystallized, out,out isomers are obtained, despite the preference for in,in isomers in solution. The lattice structures are analyzed, and the D 3 symmetry of out,out-3c enables a particularly favorable packing motif. Similarly, (in,in/out,out)-3c, e·2BH3 crystallize in out,out conformations, the former with a cycloalkane solvent guest inside.

4.
Chem Commun (Camb) ; 58(90): 12608-12611, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36285715

ABSTRACT

We report the synthesis and oxygen-atom transfer (OAT) photochemistry of [Cu(tpa)BrO3]ClO4. In situ spectroscopy and in crystallo experiments indicate OAT proceeds from a Cu-O fragment generated by sequential Cu-O bond cleavage and OAT from BrOx to [Cu(tpa)]+. These results highlight synthetic opportunities in M-O photochemistry and demonstrate the utility of in crystallo experiments to evaluating photochemical reaction mechanisms.


Subject(s)
Bromates , Copper , Copper/chemistry , Oxygen/chemistry , Photochemistry
5.
J Am Chem Soc ; 144(39): 17743-17747, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36162057

ABSTRACT

The first example of a homoleptic f-block borolide sandwich complex is presented and shown to be a high-performance single-molecule magnet (SMM). The bis(borolide) complex [K(2.2.2)][[1-(piperidino)-2,3,4,5-tetraphenylborolyl]2Dy] (1) features an unusual example of an anionic Ln3+ metallocene that supports short metal-ligand bonds and a high degree of linearity around the central Dy3+ ion, resulting in comparatively large barriers to magnetization reversal (Ueff = 1600 cm-1 for the most linear orientation) and, importantly, a high blocking temperature (TB, defined as T(τ100s)) of 66 K. These metrics put complex 1 among the very best performing SMMs reported to date and highlight the potential of dianionic borolide ligands to increase ligand field axiality, compared to monoanionic cyclic ligands, to ultimately maximize magnetic anisotropy in f-block-based SMMs.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 274: 121121, 2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35299094

ABSTRACT

Here, we report the existence of a pentameric water cluster in the host framework of [Cu(cyclam)(N3)2]·4H2O, that is stable upto 167 °C, well above the boiling point of water. The pentameric cluster structure embedded in the host framework is evident from the single crystal studies. The high thermal stability is confirmed by TGA and temperature dependent confocal Raman microscopic studies, where loss of water bands is well captured between 167 and 170 °C, besides its existence through SCXRD studies. To the best of our knowledge, this is the first report where temperature dependent confocal Raman microscopic investigation is used to study the stability of water in crystal environment. The study promises that temperature dependent confocal Raman microscopy can be an efficient tool to investigate the existence and stability of small water clusters, precisely in restricted environments.

7.
Angew Chem Int Ed Engl ; 61(9): e202115626, 2022 02 21.
Article in English | MEDLINE | ID: mdl-34905281

ABSTRACT

C-H amination and amidation by catalytic nitrene transfer are well-established and typically proceed via electrophilic attack of nitrenoid intermediates. In contrast, the insertion of (formal) terminal nitride ligands into C-H bonds is much less developed and catalytic nitrogen atom transfer remains unknown. We here report the synthesis of a formal terminal nitride complex of palladium. Photocrystallographic, magnetic, and computational characterization support the assignment as an authentic metallonitrene (Pd-N) with a diradical nitrogen ligand that is singly bonded to PdII . Despite the subvalent nitrene character, selective C-H insertion with aldehydes follows nucleophilic selectivity. Transamidation of the benzamide product is enabled by reaction with N3 SiMe3 . Based on these results, a photocatalytic protocol for aldehyde C-H trimethylsilylamidation was developed that exhibits inverted, nucleophilic selectivity as compared to typical nitrene transfer catalysis. This first example of catalytic C-H nitrogen atom transfer offers facile access to primary amides after deprotection.

8.
Inorg Chem ; 60(21): 15975-15979, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34157221

ABSTRACT

Two synthetic approaches to install metallodithiolate ligands on molybdenum centers using the synthons [Mo2(CH3CN)10]4+ and (N2S2)Co(NO) [N2S2 = N,N-bis(2-mercaptoethyl)-1,4-diazacycloheptane and NO = nitric oxide], or [Mo(NO)2(CH3CN)4]2+ (CH3CN = acetonitrile) and [(N2S2)Co]2 lead to a bis-nitrosylated, trimetallic dication, CoMoCo'. This unique asymmetric butterfly complex, with S = 1, has a bent NO within the small {Co(NO)}8 wing (denoted as Co), reflecting CoIII(NO-), and is S-bridged to a linear {Mo(NO)}6 diamagnetic unit. The latter is further S-bridged to a pentacoordinate (N2S2)CoIII(CH3CN) donor in the larger wing and is the origin of the two unpaired electrons, denoted as Co'. The asymmetry in Mo-Co distances, 3.33 Šin the Co wing and 2.73 Šin the Co' wing, indicated a Mo-Co' bonding interaction. The transfer of NO from (N2S2)Co(NO) in the former path is needed to cleave the strong quadruple bond in [Mo≣Mo]4+, with the energetic cost compensated for via a one-electron bond between Mo and Co', as indicated by natural bonding orbital analysis.

9.
Chemistry ; 27(49): 12619-12634, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34101914

ABSTRACT

The silylated hexatriynyl complex trans-(C6 F5 )(p-tol3 P)2 Pt(C≡C)3 SiEt3 (PtC6 TES) is converted in situ to PtC6 H (wet n-Bu4 N+ F- , THF) and cross coupled with the diyne H(C≡C)2 SiEt3 (HC4 TES; CuCl/TMEDA, O2 ) to give PtC10 TES (71 %). This sequence is repeated twice to afford PtC14 TES (65 %) and then PtC18 TES (27 %). An analogous series of reactions starting with PtC8 TES gives PtC12 TES (60 %), then PtC16 TES (43 %), and then PtC20 TES (17 %). Similar cross couplings with H(C≡C)2 Si(i-Pr)3 (HC4 TIPS) give PtC12 TIPS (68 %), PtC14 TIPS (68 %), and PtC16 TIPS (34 %). The trialkylsilyl species (up to PtC18 TES) are converted to 3+2 "click" cycloadducts or 1,4-disubstituted 1,2,3-triazoles trans-(C6 F5 )(p-tol3 P)2 Pt(C≡C)n-1 C=CHN(CH2 C6 H5 )N=N (29-92 % after workups). The most general procedure involves generating the terminal polyynes PtCx H (wet n-Bu4 N+ F- , THF) in the presence of benzyl azide in DMF and aqueous CuSO4 /ascorbic acid. All of the preceding complexes are crystallographically characterized and the structural and spectroscopic properties analyzed as a function of chain length. Two pseudopolymorphs of PtC20 TES are obtained, both of which feature molecules with parallel sp carbon chains in a pairwise head/tail packing motif with extensive sp/sp van der Waals contacts.


Subject(s)
Carbon , Copper , Azides , Catalysis , Cycloaddition Reaction
10.
J Am Chem Soc ; 142(47): 19862-19867, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33179914

ABSTRACT

While X-ray crystallography routinely provides structural characterization of kinetically stable pre-catalysts and intermediates, elucidation of the structures of transient reactive intermediates, which are intimately engaged in bond-breaking and -making during catalysis, is generally not possible. Here, we demonstrate in crystallo synthesis of Rh2 nitrenoids that participate in catalytic C-H amination, and we characterize these transient intermediates as triplet adducts of Rh2. Further, we observe the impact of coordinating substrate, which is present in excess during catalysis, on the structure of transient Rh2 nitrenoids. By providing structural characterization of authentic C-H functionalization intermediates, and not kinetically stabilized model complexes, these experiments provide the opportunity to define critical structure-activity relationships.

11.
Inorg Chem ; 59(18): 13117-13127, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32897701

ABSTRACT

The metal-ion-complexing properties of the tetradentate ligand 2,2'-bi-1,10-phenanthroline (BIPHEN) in 50% CH3OH/H2O are reported for a variety of metal ions. BIPHEN (with two reinforcing benzo groups in the backbone) was compared to other tetrapyridyls, 2,9-di(pyrid-2-yl)-1,10-phenanthroline (DPP; with one benzo group) and 2,2':6',2″:6″,2‴- quaterpyridine (QPY; with no benzo groups), with levels of preorganization BIPHEN > DPP > QPY. Formation constants were determined by following the variation of the intense π → π* transitions in the absorbance spectra of BIPHEN in the presence of metal ion as a function of the pH. The log K1 values show that the increased level of preorganization produced by the two benzo groups, reinforcing the backbone of the BIPHEN ligand, leads to increased complex stability with large metal ions (an ionic radius greater than 0.9 Å) compared to the less preorganized tetrapyridines DPP and QPY. In particular, the large CdII ion [log K1(BIPHEN) = 12.7] shows unusual selectivity over the small ZnII ion [log K1(BIPHEN) = 7.78]. The order of levels of preorganization BIPHEN > DPP > QPY leads to enhanced selectivity for SmIII over GdIII with increased preorganization, which is of interest in relation to separating AmIII from GdIII in the treatment of radioactive waste. AmIII is very close in ionic radius to SmIII, so that the size-based selectivity produced by the enhanced preorganization of BIPHEN should translate into enhanced AmIII/GdIII selectivity. The chelation-enhanced fluorescence (CHEF) effect in BIPHEN complexes is discussed. The CHEF effect in the ZnII complex is somewhat smaller than that for CdII, which is discussed in terms of decreased overlap in the Zn-N bonds formed by the too small ZnII, leading to a partial photoinduced-electron-transfer quenching of fluorescence. The structure of the complex [Cd(BIPHEN)2](ClO4)2 is reported and shows that the Cd-N bonds are largely normal for the unusual 8-coordination observed, except that steric clashes between the terminal pyridyl groups of each of the BIPHEN ligands, and the rest of the orthogonal BIPHEN ligand, lead to some stretching of the outer Cd-N bonds.

12.
Angew Chem Int Ed Engl ; 59(32): 13335-13340, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32367589

ABSTRACT

We report the first f-block-ruthenocenophane complexes 1 (Dy) and 2 (Tb) and provide a comparative discussion of their magnetic structure with respect to earlier reported ferrocenophane analogues. While axial elongation of the rare trigonal-prismatic geometry stabilizes the magnetic ground state in the case of Dy3+ and results in a larger barrier to magnetization reversal (U), a decrease in U is observed for the case of Tb3+ .

13.
J Am Chem Soc ; 142(25): 11232-11243, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32456423

ABSTRACT

Treatment of (ArL)CoBr (ArL = 5-mesityl-1,9-(2,4,6-Ph3C6H2)dipyrrin) with a stoichiometric amount of 1-azido-4-(tert-butyl)benzene N3(C6H4-p-tBu) furnished the corresponding four-coordinate organoazide-bound complex (ArL)CoBr(N3(C6H4-p-tBu)). Spectroscopic and structural characterization of the complex indicated redox innocent ligation of the organoazide. Slow expulsion of dinitrogen (N2) was observed at room temperature to afford a ligand functionalized product via a [3 + 2] annulation, which can be mediated by a high-valent nitrene intermediate such as a CoIII iminyl (ArL)CoBr(•N(C6H4-p-tBu)) or CoIV imido (ArL)CoBr(N(C6H4-p-tBu)) complex. The presence of the proposed intermediate and its viability as a nitrene group transfer reagent are supported by intermolecular C-H amination and aziridination reactivities. Unlike (ArL)CoBr(N3(C6H4-p-tBu)), a series of alkyl azide-bound CoII analogues expel N2 only above 60 °C, affording paramagnetic intermediates that convert to the corresponding Co-imine complexes via α-H-atom abstraction. The corresponding N2-released structures were observed via single-crystal-to-crystal transformation, suggesting formation of a Co-nitrenoid intermediate in solid-state. Alternatively, the alkyl azide-bound congeners supported by a more sterically accessible dipyrrinato scaffold tBuL (tBuL = 5-mesityl-(1,9-di-tert-butyl)dipyrrin) facilitate intramolecular 1,3-dipolar cycloaddition as well as C-H amination to furnish 1,2,3-dihydrotriazole and substituted pyrrolidine products, respectively. For the C-H amination, we observe that the temperature required for azide activation varies depending on the presence of weak C-H bonds, suggesting that the alkyl azide adducts serve as viable species for C-H amination when the C-H bonds are (1) proximal to the azide moiety and (2) sufficiently weak to be activated.


Subject(s)
Azides/chemistry , Coordination Complexes/chemistry , Pyrrolidines/chemical synthesis , Triazoles/chemical synthesis , Amination , Azides/chemical synthesis , Cobalt/chemistry , Coordination Complexes/chemical synthesis , Cycloaddition Reaction
14.
Chemistry ; 25(69): 15896-15914, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31596000

ABSTRACT

The platinum polyynyl complexes trans-(C6 F5 )(p-tol3 P)2 Pt(C≡C)n/2 H undergo oxidative homocoupling (O2 , CuCl/TMEDA) to diplatinum polyynediyl complexes trans, trans-(C6 F5 )(p-tol3 P)2 Pt(C≡C)n Pt(Pp-tol3 )2 (C6 F5 ) (n=4, 2; 6, 5; 8, 8; 92-97 %) as reported previously. When related reactions are conducted in the presence of CuI adducts of the 1,10-phenanthroline-based macrocycles 2,9-(1,10-phenanthrolinediyl)(p-C6 H4 O(CH2 )6 O)2 (1,3-C6 H4 ) (10, 33-membered) or 2,9-(1,10-phenanthrolinediyl)(p-C6 H4 O(CH2 )6 O)2 (2,7-naphthalenediyl) (11, 35-membered), excess K2 CO3 , and I2 (oxidant), rotaxanes are isolated that feature a Pt(C≡C)n Pt axle that has been threaded through the macrocycle (2⋅10, 9 %; 5⋅10, 41 %; 5⋅11, 28 %; 8⋅10, 12 %; 8⋅11, 9 %). Their crystal structures are determined and analyzed in detail, particularly with respect to geometric perturbations and the degree of steric sp carbon chain insulation. NMR spectra show a number of shielding effects. UV/Vis spectra do not indicate significant electronic interactions between the Pt(C≡C)n Pt axles and macrocycles, although cyclic voltammetry data suggest rapid reactions following oxidation.

15.
J Am Chem Soc ; 141(41): 16232-16236, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31550138

ABSTRACT

The fleeting lifetimes of reactive intermediates in C-H functionalization chemistry often prevent their direct characterization. For example, the critical nitrenoid intermediates that mediate Rh2-catalyzed C-H amination have eluded characterization for more than 40 years. In the absence of structural characterization of these species, methodological development is often computationally guided. Here we report the first X-ray crystal structure of a reactive Rh2 nitrenoid, enabled by N2 elimination from an organic azide ligand within a single-crystal matrix. The resulting high-resolution structure displays metrical parameters consistent with a triplet nitrene complex of Rh2. The demonstration of facile access to reactive metal nitrenoids within a crystalline matrix provides a platform for structural characterization of the transient species at the heart of C-H functionalization.

16.
J Am Chem Soc ; 141(38): 15338-15347, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31465212

ABSTRACT

Strategies for limiting, or reversing, the degradation of air-sensitive, base metal catalysts for the hydrogen evolution/oxidation reaction on contact with adventitious O2 are guided by nature's design of hydrogenase active sites. The affinity of oxygen for sulfur and selenium, in [NiFeS]- and [NiFeSe]-H2ase, yields oxygenated chalcogens under aerobic conditions, and delays irreversible oxygen damage at the metals by maintaining the NiFe core structures. To identify the controlling features of S-site oxygen uptake, related Ni(µ-EPhX)(µ-S'N2)Fe (E = S or Se, Fe = (η5-C5H5)FeII(CO)) complexes were electronically tuned by the para-substituent on µ-EPhX (X = CF3, Cl, H, OMe, NMe2) and compared in aspects of communication between Ni and Fe. Both single and double O atom uptake at the chalcogens led to the conversion of the four-membered ring core, Ni(µ-EPhX)(µ-S'N2)Fe, to a five-membered ring Ni-O-E-Fe-S', where an O atom inserts between E and Ni. In the E = S, X = NMe2 case, the two-oxygen uptake complex was isolated and characterized as the sulfinato species with the second O of the O2SPh-NMe2 unit pointing out of the five-membered Ni-O-S-Fe-S' ring. Qualitative rates of reaction and ratios of oxygen-uptake products correlate with Hammett parameters of the X substituent on EPhX. Density functional theory computational results support the observed remote effects on the NiFe core reactivity; the more electron-rich sulfurs are more O2 responsive in the SPhX series; the selenium analogues were even more reactive with O2. Mass spectral analysis of the sulfinato products using a mixture of 18O2/16O2 suggests a concerted mechanism in O2 addition. Deoxygenation, by reduction or O atom abstraction reagents, occurs for the 1-O addition complexes, while the 2-O, sulfinato, analogues are inert. The abstraction of oxygen from the 1-O, sulfenato species, is related to oxygen repair in soluble, NAD+-reducing [NiFe]-H2ase (Horch, M.; Lauterbach, L.; et al. J. Am. Chem. Soc. 2015, 137, 2555-2564).


Subject(s)
Hydrogenase/metabolism , Oxygen/metabolism , Binding Sites , Density Functional Theory , Hydrogenase/chemistry , Molecular Conformation , Oxygen/chemistry
17.
Chem Sci ; 10(5): 1368-1373, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30809352

ABSTRACT

A biomimetic study for S/Se oxygenation in Ni(µ-EPh)(µ-SN2)Fe, (E = S or Se; SN2 = Me-diazacycloheptane-CH2CH2S); Fe = (η5-C5H5)FeII(CO) complexes related to the oxygen-damaged active sites of [NiFeS]/[NiFeSe]-H2ases is described. Mono- and di-oxygenates (major and minor species, respectively) of the chalcogens result from exposure of the heterobimetallics to O2; one was isolated and structurally characterized to have Ni-O-SePh-Fe-S connectivity within a 5-membered ring. A compositionally analogous mono-oxy species was implicated by ν(CO) IR spectroscopy to be the corresponding Ni-O-SPh-Fe-S complex; treatment with O-abstraction agents such as P(o-tolyl)3 or PMe3 remediated the O damage. Computational studies (DFT) found that the lowest energy isomers of mono-oxygen derivatives of Ni(µ-EPh)(µ-SN2)Fe complexes were those with O attachment to Ni rather than Fe, a result consonant with experimental findings, but at odds with oxygenates found in oxygen-damaged [NiFeS]/[NiFeSe]-H2ase structures. A computer-generated model based on substituting -SMe for the N-CH2CH2S- sulfur donor of the N2S suggested that constraint within the chelate hindered O-atom uptake at that sulfur site.

18.
Angew Chem Int Ed Engl ; 57(50): 16442-16446, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30328650

ABSTRACT

The trinuclear copper(I) pyrazolate complex [Cu3 ] rearranges to the dinuclear analogue [Cu2 ⋅(C2 H4 )2 ] when exposed to ethylene gas. Remarkably, the [Cu3 ]↔[Cu2 ⋅(C2 H4 )2 ] rearrangement occurs reversibly in the solid state. Furthermore, this transformation emulates solution chemistry. The bond-making and breaking processes associated with the rearrangement in the solid-state result in an observed heat of adsorption (-13±1 kJ mol-1 per Cu-C2 H4 interaction) significantly lower than other Cu-C2 H4 interactions (≥-24 kJ mol-1 ). The low overall heat of adsorption, "step" isotherms, high ethylene capacity (2.76 mmol g-1 ; 7.6 wt % at 293 K), and high ethylene/ethane selectivity (136:1 at 293 K) make [Cu3 ] an interesting basis for the rational design of materials for low-energy ethylene/ethane separations.

19.
Chem Asian J ; 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29870152

ABSTRACT

Reactions of (O=)PH(OCH2 CH3 )2 and BrMg(CH2 )m CH=CH2 (4.9-3.2 equiv; m=4 (a), 5 (b), 6 (c)) give the dialkylphosphine oxides (O=)PH[(CH2 )m CH=CH2 ]2 (2 a-c; 77-81 % after workup), which are treated with NaH and then α,ω-dibromides Br(CH2 )n Br (0.49-0.32 equiv; n=8 (a'), 10 (b'), 12 (c'), 14 (d')) to yield the bis(trialkylphosphine oxides) [H2 C=CH(CH2 )m ]2 P(=O)(CH2 )n (O=)P[(CH2 )m CH=CH2 ]2 (3 ab', 3 bc', 3 cd', 3 ca'; 79-84 %). Reactions of 3 bc' and 3 ca' with Grubbs' first-generation catalyst and then H2 /PtO2 afford the dibridgehead diphosphine dioxides (4 bc', 4 ca'; 14-19 %, n'=2m+2); 31 P NMR spectra show two stereoisomeric species (ca. 70:30). Crystal structures of two isomers of the latter are obtained, out,out-4 ca' and a conformer of in,out-4 ca' that features crossed chains, such that the (O=)P vectors appear out,out. Whereas 4 bc' resists crystallization, a byproduct derived from an alternative metathesis mode, (CH2 )12 P(=O)(CH2 )12 (O=)P(CH2 )12 , as well as 3 ab' and 3 bc', are structurally characterized. The efficiencies of other routes to dibridgehead diphosphorus compounds are compared.

20.
J Insect Sci ; 17(3)2017 May 01.
Article in English | MEDLINE | ID: mdl-28973574

ABSTRACT

Bagrada hilaris is a polyphagous herbivore reported as an invasive pest in the United States. During the course of dissecting Burmeister hilaris unique crystals were observed in both the midgut and oviducts. Crystals were identified using X-ray diffraction techniques. Both acicular (i.e., needle-like, slender, and/or tapered) and cubic (i.e., cube shaped) crystals were observed in six of 75 individuals examined (8.0%). The crystals were mainly observed in females (6.7%), followed by males (1.3%) with no crystals observed in the minimal number of nymphs examined (0%). Crystals of both types were detected in the midgut and lateral oviducts of the females and midgut in males. The acicular crystals often appeared as distinct bundles when present in the midgut and oviducts. Crystals varied in size with the acicular crystals ranging from 0.12 mm to 0.5 mm in length although the cubic crystals ranged in length from 0.25 mm to over 1.0 mm with widths of ∼0.25 mm. The cubic crystals were identified as allantoin although the acicular crystals were most likely dl-allantoin in combination with halite. While allantoin in a soluble form is often found in insect tissues and excreta; being present as a crystal, especially in such a large form, is curious and raises some interesting questions. More research is warranted to further understand mechanisms associated with such crystal formation in B. hilaris and can lead to a better understanding of the excretory process in this species and the role allantoin plays in the elimination of excess nitrogen.


Subject(s)
Allantoin/metabolism , Heteroptera/metabolism , Animals , Crystallization , Female , Gastrointestinal Tract/metabolism , Male , Oviducts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...