Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 25(35): 24163-24167, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37614193

ABSTRACT

Correction for 'Increasing ion yield circular dichroism in femtosecond photoionisation using optimal control theory' by Manel Mondelo-Martell et al., Phys. Chem. Chem. Phys., 2022, 24, 9286-9297, https://doi.org/10.1039/D1CP05239J.

2.
Science ; 380(6640): 77-81, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37023184

ABSTRACT

Feshbach resonances are fundamental to interparticle interactions and become particularly important in cold collisions with atoms, ions, and molecules. In this work, we present the detection of Feshbach resonances in a benchmark system for strongly interacting and highly anisotropic collisions: molecular hydrogen ions colliding with noble gas atoms. The collisions are launched by cold Penning ionization, which exclusively populates Feshbach resonances that span both short- and long-range parts of the interaction potential. We resolved all final molecular channels in a tomographic manner using ion-electron coincidence detection. We demonstrate the nonstatistical nature of the final-state distribution. By performing quantum scattering calculations on ab initio potential energy surfaces, we show that the isolation of the Feshbach resonance pathways reveals their distinctive fingerprints in the collision outcome.

3.
Phys Chem Chem Phys ; 24(44): 27483-27494, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36342315

ABSTRACT

We investigate photoelectron circular dichroism (PECD) with coherent light sources whose pulse durations range from femtoseconds to nanoseconds. To that end, we employed an optical parametric amplifier, an ultraviolet optical pulse shaper, and a nanosecond dye laser, all centered around a wavelength of 380 nm. A multiphoton ionization experiment on the gas-phase chiral prototype fenchone found that PECD measured via the 3s intermediate resonance is about 15% and robust over five orders of magnitude of the pulse duration. PECD remains robust despite ongoing molecular dynamics such as rotation, vibration, and internal conversion. We used the Lindblad equation to model the molecular dynamics. Under the assumption of a cascading internal conversion, from the 3p to the 3s and further to the ground state, we estimated the lifetimes of the internal conversion processes in the 100 fs regime.

4.
Phys Chem Chem Phys ; 24(16): 9286-9297, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35411352

ABSTRACT

We investigate how optimal control theory can be used to improve Circular Dichroism (CD) signals for the A-band of fenchone measured via the photoionization yield upon further excitation. These transitions are electric dipole forbidden to first order, which translates into low population transfer to the excited state but allows for a clearer interplay between electric and magnetic transition dipole moments, which are of the same order of magnitude. Using a model including the electronic ground and excited A state as well as all permanent and transition multipole moments up to the electric quadrupole, we find that the absolute CD signal of randomly oriented molecules can be increased by a factor of 2.5 when using shaped laser pulses, with the anisotropy parameter g increasing from 0.06 to 1. We find that this effect is caused by the interference between the excitation pathways prompted by the different multipole moments of the molecule.

5.
Nat Chem ; 13(1): 94-98, 2021 01.
Article in English | MEDLINE | ID: mdl-33257885

ABSTRACT

Scattering resonances play a central role in collision processes in physics and chemistry. They help build an intuitive understanding of the collision dynamics due to the spatial localization of the scattering wavefunctions. For resonances that are localized in the reaction region, located at short separation behind the centrifugal barrier, sharp peaks in the reaction rates are the characteristic signature, observed recently with state-of-the-art experiments in low-energy collisions. If, however, the localization occurs outside of the reaction region, mostly the elastic scattering is modified. This may occur due to above-barrier resonances, the quantum analogue of classical orbiting. By probing both elastic and inelastic scattering of metastable helium with deuterium molecules in merged-beam experiments, we differentiate between the nature of quantum resonances-tunnelling resonances versus above-barrier resonances-and corroborate our findings by calculating the corresponding scattering wavefunctions.

6.
Nat Commun ; 11(1): 999, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32081896

ABSTRACT

Decay of bound states due to coupling with free particle states is a general phenomenon occurring at energy scales from MeV in nuclear physics to peV in ultracold atomic gases. Such a coupling gives rise to Fano-Feshbach resonances (FFR) that have become key to understanding and controlling interactions-in ultracold atomic gases, but also between quasiparticles, such as microcavity polaritons. Their energy positions were shown to follow quantum chaotic statistics. In contrast, their lifetimes have so far escaped a similarly comprehensive understanding. Here, we show that bound states, despite being resonantly coupled to a scattering state, become protected from decay whenever the relative phase is a multiple of π. We observe this phenomenon by measuring lifetimes spanning four orders of magnitude for FFR of spin-orbit excited molecular ions with merged beam and electrostatic trap experiments. Our results provide a blueprint for identifying naturally long-lived states in a decaying quantum system.

7.
Phys Rev E ; 100(5-1): 052105, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31869928

ABSTRACT

Quantum dynamical simulations of statistical ensembles pose a significant computational challenge due to the fact that mixed states need to be represented. If the underlying dynamics is fully unitary, for example, in ultrafast coherent control at finite temperatures, then one approach to approximate time-dependent observables is to sample the density operator by solving the Schrödinger equation for a set of wave functions with randomized phases. We show that, on average, random-phase wave functions perform well for ensembles with high mixedness, whereas at higher purities a deterministic sampling of the energetically lowest-lying eigenstates becomes superior. We prove that minimization of the worst-case error for computing arbitrary observables is uniquely attained by eigenstate-based sampling. We show that this error can be used to form a qualitative estimate of the set of ensemble purities for which the sampling performance of the eigenstate-based approach is superior to random-phase wave functions. Furthermore, we present refinements to both schemes which remove redundant information from the sampling procedure to accelerate their convergence. Finally, we point out how the structure of low-rank observables can be exploited to further improve eigenstate-based sampling schemes.

8.
Phys Rev Lett ; 117(13): 133902, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27715131

ABSTRACT

We present a general theory of bicircular high-order-harmonic generation from N-fold rotationally symmetric molecules. Using a rotating frame of reference we predict the complete structure of the high-order-harmonic spectra for arbitrary driving frequency ratios and show how molecular symmetries can be directly identified from the harmonic signal. Our findings reveal that a characteristic fingerprint of rotational molecular symmetries can be universally observed in the ultrafast response of molecules to strong bicircular fields.

9.
Sci Rep ; 5: 12430, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26199059

ABSTRACT

Quantum technology, exploiting entanglement and the wave nature of matter, relies on the ability to accurately control quantum systems. Quantum control is often compromised by the interaction of the system with its environment since this causes loss of amplitude and phase. However, when the dynamics of the open quantum system is non-Markovian, amplitude and phase flow not only from the system into the environment but also back. Interaction with the environment is then not necessarily detrimental. We show that the back-flow of amplitude and phase can be exploited to carry out quantum control tasks that could not be realized if the system was isolated. The control is facilitated by a few strongly coupled, sufficiently isolated environmental modes. Our paradigmatic example considers a weakly anharmonic ladder with resonant amplitude control only, restricting realizable operations to SO(N). The coupling to the environment, when harnessed with optimization techniques, allows for full SU(N) controllability.

10.
J Mol Cell Cardiol ; 68: 29-37, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24412534

ABSTRACT

The electrophysiological consequences of cardiomyocyte and myofibroblast interactions remain unclear, and the contribution of mechanical coupling between these two cell types is still poorly understood. In this study, we examined the time course and mechanisms by which addition of myofibroblasts activated by transforming growth factor-beta (TGF-ß) influence the conduction velocity (CV) of neonatal rat ventricular cell monolayers. We observed that myofibroblasts affected CV within 30 min of contact and that these effects were temporally correlated with membrane deformation of cardiomyocytes by the myofibroblasts. Expression of dominant negative RhoA in the myofibroblasts impaired both myofibroblast contraction and myofibroblast-induced slowing of cardiac conduction, whereas overexpression of constitutive RhoA had little effect. To determine the importance of mechanical coupling between these cell types, we examined the expression of the two primary cadherins in the heart (N- and OB-cadherin) at cell-cell contacts formed between myofibroblasts and cardiomyocytes. Although OB-cadherin was frequently found at myofibroblast-myofibroblast contacts, very little expression was observed at myofibroblast-cardiomyocyte contacts. The myofibroblast-induced slowing of cardiac conduction was not prevented by silencing of OB-cadherin in the myofibroblasts, and could be reversed by inhibitors of mechanosensitive channels (gadolinium or streptomycin) and cellular contraction (blebbistatin). In contrast, N-cadherin expression was commonly observed at myofibroblast-cardiomyocyte contacts, and silencing of N-cadherin in myofibroblasts prevented the myofibroblast-dependent slowing of cardiac conduction. We propose that myofibroblasts can impair the electrophysiological function of cardiac tissue through the application of contractile force to the cardiomyocyte membrane via N-cadherin junctions.


Subject(s)
Cadherins/metabolism , Excitation Contraction Coupling , Heart Conduction System/physiopathology , Myocytes, Cardiac/metabolism , Myofibroblasts/metabolism , Nerve Tissue Proteins/metabolism , Adherens Junctions/metabolism , Animals , Cell Movement , Cells, Cultured , Coculture Techniques , Heart Conduction System/metabolism , Mutation, Missense , Myocardial Contraction , Rats , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
11.
Phys Rev Lett ; 111(20): 200401, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24289669

ABSTRACT

We show that the minimum experimental effort to estimate the average error of a quantum gate scales as 2(n) for n qubits and requires classical computational resources ∼n(2)2(3n) when no specific assumptions on the gate can be made. This represents a reduction by 2(n) compared to the best currently available protocol, Monte Carlo characterization. The reduction comes at the price of either having to prepare entangled input states or obtaining bounds rather than the average fidelity itself. It is achieved by applying Monte Carlo sampling to so-called 2-designs or two classical fidelities. For the specific case of Clifford gates, the original version of Monte Carlo characterization based on the channel-state isomorphism remains an optimal choice. We provide a classification of the available efficient strategies to determine the average gate error in terms of the number of required experimental settings, average number of actual measurements, and classical computational resources.

12.
J Chem Phys ; 139(16): 164124, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24182021

ABSTRACT

Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining ab initio quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C. P. Koch, and Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011)]. Random phase thermal wavefunctions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects.

13.
J Chem Phys ; 136(10): 104103, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22423824

ABSTRACT

The non-linear optimization method developed by A. Konnov and V. Krotov [Autom. Remote Cont. (Engl. Transl.) 60, 1427 (1999)] has been used previously to extend the capabilities of optimal control theory from the linear to the non-linear Schrödinger equation [S. E. Sklarz and D. J. Tannor, Phys. Rev. A 66, 053619 (2002)]. Here we show that based on the Konnov-Krotov method, monotonically convergent algorithms are obtained for a large class of quantum control problems. It includes, in addition to nonlinear equations of motion, control problems that are characterized by non-unitary time evolution, nonlinear dependencies of the Hamiltonian on the control, time-dependent targets, and optimization functionals that depend to higher than second order on the time-evolving states. We furthermore show that the nonlinear (second order) contribution can be estimated either analytically or numerically, yielding readily applicable optimization algorithms. We demonstrate monotonic convergence for an optimization functional that is an eighth-degree polynomial in the states. For the "standard" quantum control problem of a convex final-time functional, linear equations of motion and linear dependency of the Hamiltonian on the field, the second-order contribution is not required for monotonic convergence but can be used to speed up convergence. We demonstrate this by comparing the performance of first- and second-order algorithms for two examples.

SELECTION OF CITATIONS
SEARCH DETAIL
...