Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(12): eabm7103, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35319983

ABSTRACT

Novel magnetic ground states have been stabilized in two-dimensional (2D) magnets such as skyrmions, with the potential next-generation information technology. Here, we report the experimental observation of a Néel-type skyrmion lattice at room temperature in a single-phase, layered 2D magnet, specifically a 50% Co-doped Fe5GeTe2 (FCGT) system. The thickness-dependent magnetic domain size follows Kittel's law. The static spin textures and spin dynamics in FCGT nanoflakes were studied by Lorentz electron microscopy, variable-temperature magnetic force microscopy, micromagnetic simulations, and magnetotransport measurements. Current-induced skyrmion lattice motion was observed at room temperature, with a threshold current density, jth = 1 × 106 A/cm2. This discovery of a skyrmion lattice at room temperature in a noncentrosymmetric material opens the way for layered device applications and provides an ideal platform for studies of topological and quantum effects in 2D.

2.
Ultramicroscopy ; 184(Pt A): 164-171, 2018 01.
Article in English | MEDLINE | ID: mdl-28915440

ABSTRACT

The ability to record large field-of-view images without a loss in spatial resolution is of crucial importance for imaging science. For most imaging techniques however, an increase in field-of-view comes at the cost of decreased resolution. Here we present a novel extension to ptychographic coherent diffractive imaging that permits simultaneous full-field imaging of multiple locations by illuminating the sample with spatially separated, interfering probes. This technique allows for large field-of-view imaging in amplitude and phase while maintaining diffraction-limited resolution, without an increase in collected data i.e. diffraction patterns acquired.

3.
Opt Express ; 23(23): 30250-8, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26698505

ABSTRACT

We introduce a novel coherent diffraction imaging technique based on ptychography that enables simultaneous full-field imaging of multiple, spatially separate, sample locations. This technique only requires that diffracted light from spatially separated sample sites be mutually incoherent at the detector, which can be achieved using multiple probes that are separated either by wavelength or by orthogonal polarization states. This approach enables spatially resolved polarization spectroscopy from a single ptychography scan, as well as allowing a larger field of view to be imaged without loss in spatial resolution. Further, we compare the numerical efficiency of the multi-mode ptychography algorithm with a single mode algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...