Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 152(4): 2434, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36319237

ABSTRACT

We develop a deep learning-based infrasonic detection and categorization methodology that uses convolutional neural networks with self-attention layers to identify stationary and non-stationary signals in infrasound array processing results. Using features extracted from the coherence and direction-of-arrival information from beamforming at different infrasound arrays, our model more reliably detects signals compared with raw waveform data. Using three infrasound stations maintained as part of the International Monitoring System, we construct an analyst-reviewed data set for model training and evaluation. We construct models using a 4-category framework, a generalized noise vs non-noise detection scheme, and a signal-of-interest (SOI) categorization framework that merges short duration stationary and non-stationary categories into a single SOI category. We evaluate these models using a combination of k-fold cross-validation, comparison with an existing "state-of-the-art" detector, and a transportability analysis. Although results are mixed in distinguishing stationary and non-stationary short duration signals, f-scores for the noise vs non-noise and SOI analyses are consistently above 0.96, implying that deep learning-based infrasonic categorization is a highly accurate means of identifying signals-of-interest in infrasonic data records.

2.
J Geophys Res Solid Earth ; 127(11): e2022JB024401, 2022 Nov.
Article in English | MEDLINE | ID: mdl-37033773

ABSTRACT

Accurate earthquake location and magnitude estimation play critical roles in seismology. Recent deep learning frameworks have produced encouraging results on various seismological tasks (e.g., earthquake detection, phase picking, seismic classification, and earthquake early warning). Many existing machine learning earthquake location methods utilize waveform information from a single station. However, multiple stations contain more complete information for earthquake source characterization. Inspired by recent successes in applying graph neural networks (GNNs) in graph-structured data, we develop a Spatiotemporal Graph Neural Network (STGNN) for estimating earthquake locations and magnitudes. Our graph neural network leverages geographical and waveform information from multiple stations to construct graphs automatically and dynamically by adaptive message passing based on graphs' edges. Using a recent graph neural network and a fully convolutional neural network as baselines, we apply STGNN to earthquakes recorded by the Southern California Seismic Network from 2000 to 2019 and earthquakes collected in Oklahoma from 2014 to 2015. STGNN yields more accurate earthquake locations than those obtained by the baseline models and performs comparably in terms of depth and magnitude prediction, though the ability to predict depth and magnitude remains weak for all tested models. Our work demonstrates the potential of using GNNs and multiple stations for better automatic estimation of earthquake epicenters.

SELECTION OF CITATIONS
SEARCH DETAIL
...