Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
ACS Nano ; 17(21): 21865-21877, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37864568

ABSTRACT

Emerging reconfigurable devices are fast gaining popularity in the search for next-generation computing hardware, while ferroelectric engineering of the doping state in semiconductor materials has the potential to offer alternatives to traditional von-Neumann architecture. In this work, we combine these concepts and demonstrate the suitability of reconfigurable ferroelectric field-effect transistors (Re-FeFETs) for designing nonvolatile reconfigurable logic-in-memory circuits with multifunctional capabilities. Modulation of the energy landscape within a homojunction of a 2D tungsten diselenide (WSe2) layer is achieved by independently controlling two split-gate electrodes made of a ferroelectric 2D copper indium thiophosphate (CuInP2S6) layer. Controlling the state encoded in the program gate enables switching between p, n, and ambipolar FeFET operating modes. The transistors exhibit on-off ratios exceeding 106 and hysteresis windows of up to 10 V width. The homojunction can change from Ohmic-like to diode behavior with a large rectification ratio of 104. When programmed in the diode mode, the large built-in p-n junction electric field enables efficient separation of photogenerated carriers, making the device attractive for energy-harvesting applications. The implementation of the Re-FeFET for reconfigurable logic functions shows how a circuit can be reconfigured to emulate either polymorphic ferroelectric NAND/AND logic-in-memory or electronic XNOR logic with a long retention time exceeding 104 s. We also illustrate how a circuit design made of just two Re-FeFETs exhibits high logic expressivity with reconfigurability at runtime to implement several key nonvolatile 2-input logic functions. Moreover, the Re-FeFET circuit demonstrates high compactness, with an up to 80% reduction in transistor count compared to standard CMOS design. The 2D van de Waals Re-FeFET devices therefore exhibit promising potential for both More-than-Moore and beyond-Moore future of electronics, in particular for an energy-efficient implementation of in-memory computing and machine learning hardware, due to their multifunctionality and design compactness.

2.
ACS Nano ; 17(6): 5956-5962, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36897053

ABSTRACT

Graphene is an ideal platform to study the coherence of quantum interference pathways by tuning doping or laser excitation energy. The latter produces a Raman excitation profile that provides direct insight into the lifetimes of intermediate electronic excitations and, therefore, on quantum interference, which has so far remained elusive. Here, we control the Raman scattering pathways by tuning the laser excitation energy in graphene doped up to 1.05 eV. The Raman excitation profile of the G mode indicates its position and full width at half-maximum are linearly dependent on doping. Doping-enhanced electron-electron interactions dominate the lifetimes of Raman scattering pathways and reduce Raman interference. This will provide guidance for engineering quantum pathways for doped graphene, nanotubes, and topological insulators.

3.
Bio Protoc ; 13(3): e4608, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36816990

ABSTRACT

Proteases control plant growth and development by limited proteolysis of regulatory proteins at highly specific sites. This includes the processing of peptide hormone precursors to release the bioactive peptides as signaling molecules. The proteases involved in this process have long remained elusive. Confirmation of a candidate protease as a peptide precursor-processing enzyme requires the demonstration of protease-mediated precursor cleavage in vitro. In vitro cleavage assays rely on the availability of suitable substrates and the candidate protease with high purity. Here, we provide a protocol for the expression, purification, and characterization of tomato (Solanum lycopersicum) phytaspases as candidate proteases for the processing of the phytosulfokine precursor. We also show how synthetic oligopeptide substrates can be used to demonstrate site-specific precursor cleavage. Graphical abstract.

4.
Front Plant Sci ; 13: 1042446, 2022.
Article in English | MEDLINE | ID: mdl-36426154

ABSTRACT

In this study the anaphase promoting complex subunit CDC27a from Arabidopsis thaliana was introduced in the genome of Nicotiana benthamiana by Agrobacterium tumefaciens. The presence of the At-CDC27a gene facilitates plant biomass production. Compared to wild type N. benthamiana the leaf mass fraction of the best performing transgenic line At-CDC27a-29 was increased up to 154%. The positive effect of the At-CDC27a expression on leaf biomass accumulation was accompanied by an enlarged total leaf area. Furthermore, the ectopic expression of the At-CDC27a also affected cellular conditions for the production of foreign proteins delivered by the TRBO vector. In comparison to the non-transgenic control, the protein accumulation in the At-CDC27a-29 plant host increased up to 146% for GFP and up to 181% for scFv-TM43-E10. Collectively, the modified N. benthamiana plants developed in this study might be useful to improve the yield of recombinant proteins per biomass unit in closed facilities.

5.
BMC Plant Biol ; 22(1): 92, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35232393

ABSTRACT

BACKGROUND: Falcarinol-type polyacetylenes (PAs) such as falcarinol (FaOH) and falcarindiol (FaDOH) are produced by several Apiaceae vegetables such as carrot, parsnip, celeriac and parsley. They are known for numerous biological functions and contribute to the undesirable bitter off-taste of carrots and their products. Despite their interesting biological functions, the genetic basis of their structural diversity and function is widely unknown. A better understanding of the genetics of the PA levels present in carrot roots might support breeding of carrot cultivars with tailored PA levels for food production or nutraceuticals. RESULTS: A large carrot F2 progeny derived from a cross of a cultivated inbred line with an inbred line derived from a Daucus carota ssp. commutatus accession rich in PAs was used for linkage mapping and quantitative trait locus (QTL) analysis. Ten QTLs for FaOH and FaDOH levels in roots were identified in the carrot genome. Major QTLs for FaOH and FaDOH with high LOD values of up to 40 were identified on chromosomes 4 and 9. To discover putative candidate genes from the plant fatty acid metabolism, we examined an extended version of the inventory of the carrot FATTY ACID DESATURASE2 (FAD2) gene family. Additionally, we used the carrot genome sequence for a first inventory of ECERIFERUM1 (CER1) genes possibly involved in PA biosynthesis. We identified genomic regions on different carrot chromosomes around the found QTLs that contain several FAD2 and CER1 genes within their 2-LOD confidence intervals. With regard to the major QTLs on chromosome 9 three putative CER1 decarbonylase gene models are proposed as candidate genes. CONCLUSION: The present study increases the current knowledge on the genetics of PA accumulation in carrot roots. Our finding that carrot candidate genes from the fatty acid metabolism are significantly associated with major QTLs for both major PAs, will facilitate future functional gene studies and a further dissection of the genetic factors controlling PA accumulation. Characterization of such candidate genes will have a positive impact on carrot breeding programs aimed at both lowering or increasing PA concentrations in carrot roots.


Subject(s)
Daucus carota , Polyacetylene Polymer/metabolism , Taste , Daucus carota/genetics , Daucus carota/metabolism , Fatty Acids/metabolism , Genes, Plant , Phenotype , Plant Roots/metabolism , Quantitative Trait Loci
6.
Front Plant Sci ; 12: 712438, 2021.
Article in English | MEDLINE | ID: mdl-34567027

ABSTRACT

Transient expression in Nicotiana benthamiana holds great potential for recombinant protein manufacturing due to its advantages in terms of speed and yield compared to stably transformed plants. To continue improving the quantity of recombinant proteins the plant host will need to be modified at both plant and cellular levels. In attempt to increase leaf mass fraction, we transformed N. benthamiana with the At-CycD2 gene, a positive regulator of the cell cycle. Phenotypic characterization of the T1 progeny plants revealed their accelerated above-ground biomass accumulation and enhanced rate of leaf initiation. In comparison to non-transgenic control the best performing line At-CycD2-15 provided 143 and 140% higher leaf and stem biomass fractions, respectively. The leaf area enlargement of the At-CycD2-15 genotype was associated with the increase of epidermal cell number compensated by slightly reduced cell size. The production capacity of the At-CycD2-15 transgenic line was superior to that of the non-transgenic N. benthamiana. The accumulation of transiently expressed GFP and scFv-TM43-E10 proteins per unit biomass was increased by 138.5 and 156.7%, respectively, compared to the wild type. With these results we demonstrate the potential of cell cycle regulator gene At-CycD2 to modulate both plant phenotype and intracellular environment of N. benthamiana for enhanced recombinant protein yield.

7.
Nano Lett ; 21(7): 2898-2904, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33797265

ABSTRACT

We explore the tunability of the phonon polarization in suspended uniaxially strained graphene by magneto-phonon resonances. The uniaxial strain lifts the degeneracy of the LO and TO phonons, yielding two cross-linearly polarized phonon modes and a splitting of the Raman G peak. We utilize the strong electron-phonon coupling in graphene and the off-resonant coupling to a magneto-phonon resonance to induce a gate-tunable circular phonon dichroism. This, together with the strain-induced splitting of the G peak, allows us to controllably tune the two linearly polarized G mode phonons into circular phonon modes. We are able to achieve a circular phonon polarization of up to 40% purely by electrostatic fields and can reverse its sign by tuning from electron to hole doping. This provides unprecedented electrostatic control over the angular momentum of phonons, which paves the way toward phononic applications.

8.
J Hist Ideas ; 82(1): 85-107, 2021.
Article in English | MEDLINE | ID: mdl-33583832
9.
Hortic Res ; 7(1): 190, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33328444

ABSTRACT

In plants, low molecular weight terpenes produced by terpene synthases (TPS) contribute to multiple ecologically and economically important traits. The present study investigates a carrot terpene synthase gene cluster on chromosome 4 associated with volatile monoterpene production. Two carrot mutants, yellow and cola, which are contrasting in the content of low molecular weight terpenes, were crossed to develop an F2 mapping population. The mapping analysis revealed overlapping QTLs on chromosome 4 for sabinene, α-thujene, α-terpinene, γ-terpinene, terpinen-4-ol and 4-carene. The genomic region of this locus includes a cluster of five terpene synthase genes (DcTPS04, DcTPS26, DcTPS27, DcTPS54 and DcTPS55). DcTPS04 and DcTPS54 displayed genotype- and tissue-specific variation in gene expression. Based on the QTL mapping results and the gene expression patterns, DcTPS04 and DcTPS54 were selected for functional characterization. In vitro enzyme assays showed that DcTPS54 is a single-product enzyme catalysing the formation of sabinene, whereas DcTPS04 is a multiple-product terpene synthase producing α-terpineol as a major product and four additional products including sabinene, ß-limonene, ß-pinene and myrcene. Furthermore, we developed a functional molecular marker that could discriminate carrot genotypes with different sabinene content in a set of 85 accessions.

10.
Sci Adv ; 6(32): eabb5915, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32821840

ABSTRACT

We present an ab initio computational approach for the calculation of resonant Raman intensities, including both excitonic and nonadiabatic effects. Our diagrammatic approach, which we apply to two prototype, semiconducting layered materials, allows a detailed analysis of the impact of phonon-mediated exciton-exciton scattering on the intensities. In the case of bulk hexagonal boron nitride, this scattering leads to strong quantum interference between different excitonic resonances, strongly redistributing oscillator strength with respect to optical absorption spectra. In the case of MoS2, we observe that quantum interference effects are suppressed by the spin-orbit splitting of the excitons.

11.
Sci Rep ; 10(1): 5661, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32205847

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Rep Prog Phys ; 83(3): 036501, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31923906

ABSTRACT

One of the fundamental properties of semiconductors is their ability to support highly tunable electric currents in the presence of electric fields or carrier concentration gradients. These properties are described by transport coefficients such as electron and hole mobilities. Over the last decades, our understanding of carrier mobilities has largely been shaped by experimental investigations and empirical models. Recently, advances in electronic structure methods for real materials have made it possible to study these properties with predictive accuracy and without resorting to empirical parameters. These new developments are unlocking exciting new opportunities, from exploring carrier transport in quantum matter to in silico designing new semiconductors with tailored transport properties. In this article, we review the most recent developments in the area of ab initio calculations of carrier mobilities of semiconductors. Our aim is threefold: to make this rapidly-growing research area accessible to a broad community of condensed-matter theorists and materials scientists; to identify key challenges that need to be addressed in order to increase the predictive power of these methods; and to identify new opportunities for increasing the impact of these computational methods on the science and technology of advanced materials. The review is organized in three parts. In the first part, we offer a brief historical overview of approaches to the calculation of carrier mobilities, and we establish the conceptual framework underlying modern ab initio approaches. We summarize the Boltzmann theory of carrier transport and we discuss its scope of applicability, merits, and limitations in the broader context of many-body Green's function approaches. We discuss recent implementations of the Boltzmann formalism within the context of density functional theory and many-body perturbation theory calculations, placing an emphasis on the key computational challenges and suggested solutions. In the second part of the article, we review applications of these methods to materials of current interest, from three-dimensional semiconductors to layered and two-dimensional materials. In particular, we discuss in detail recent investigations of classic materials such as silicon, diamond, gallium arsenide, gallium nitride, gallium oxide, and lead halide perovskites as well as low-dimensional semiconductors such as graphene, silicene, phosphorene, molybdenum disulfide, and indium selenide. We also review recent efforts toward high-throughput calculations of carrier transport. In the last part, we identify important classes of materials for which an ab initio study of carrier mobilities is warranted. We discuss the extension of the methodology to study topological quantum matter and materials for spintronics and we comment on the possibility of incorporating Berry-phase effects and many-body correlations beyond the standard Boltzmann formalism.

13.
Sci Rep ; 8(1): 10531, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30002392

ABSTRACT

Phytaspases are Asp-specific subtilisin-like plant proteases that have been likened to animal caspases with respect to their regulatory function in programmed cell death (PCD). We identified twelve putative phytaspase genes in tomato that differed widely in expression level and tissue-specific expression patterns. Most phytaspase genes are tandemly arranged on tomato chromosomes one, four, and eight, and many belong to taxon-specific clades, e.g. the P69 clade in the nightshade family, suggesting that these genes evolved by gene duplication after speciation. Five tomato phytaspases (SlPhyts) were expressed in N. benthamiana and purified to homogeneity. Substrate specificity was analyzed in a proteomics assay and with a panel of fluorogenic peptide substrates. Similar to animal caspases, SlPhyts recognized an extended sequence motif including Asp at the cleavage site. Clear differences in cleavage site preference were observed implying different substrates in vivo and, consequently, different physiological functions. A caspase-like function in PCD was confirmed for five of the seven tested phytaspases. Cell death was triggered by ectopic expression of SlPhyts 2, 3, 4, 5, 6 in tomato leaves by agro-infiltration, as well as in stably transformed transgenic tomato plants. SlPhyts 3, 4, and 5 were found to contribute to cell death under oxidative stress conditions.


Subject(s)
Caspases/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/metabolism , Apoptosis/physiology , Caspases/genetics , Cell Death , Ectopic Gene Expression , Gene Duplication , Genes, Plant/genetics , Solanum lycopersicum/genetics , Oxidative Stress/physiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/isolation & purification , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Proteomics , Substrate Specificity , Nicotiana/genetics , Nicotiana/metabolism
14.
Nano Lett ; 18(3): 1707-1713, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29425440

ABSTRACT

There are a number of theoretical proposals based on strain engineering of graphene and other two-dimensional materials, however purely mechanical control of strain fields in these systems has remained a major challenge. The two approaches mostly used so far either couple the electrical and mechanical properties of the system simultaneously or introduce some unwanted disturbances due to the substrate. Here, we report on silicon micromachined comb-drive actuators to controllably and reproducibly induce strain in a suspended graphene sheet in an entirely mechanical way. We use spatially resolved confocal Raman spectroscopy to quantify the induced strain, and we show that different strain fields can be obtained by engineering the clamping geometry, including tunable strain gradients of up to 1.4%/µm. Our approach also allows for multiple axis straining and is equally applicable to other two-dimensional materials, opening the door to investigating their mechanical and electromechanical properties. Our measurements also clearly identify defects at the edges of a graphene sheet as being weak spots responsible for its mechanical failure.

15.
New Phytol ; 218(3): 1167-1178, 2018 05.
Article in English | MEDLINE | ID: mdl-28407256

ABSTRACT

Peptide hormones are implicated in many important aspects of plant life and are usually synthesized as precursor proteins. In contrast to animals, data for plant peptide hormone maturation are scarce and the specificity of processing enzyme(s) is largely unknown. Here we tested a hypothesis that processing of prosystemin, a precursor of tomato (Solanum lycopersicum) wound hormone systemin, is performed by phytaspases, aspartate-specific proteases of the subtilase family. Following the purification of phytaspase from tomato leaves, two tomato phytaspase genes were identified, the cDNAs were cloned and the recombinant enzymes were obtained after transient expression in Nicotiana benthamiana. The newly identified tomato phytaspases hydrolyzed prosystemin at two aspartate residues flanking the systemin sequence. Site-directed mutagenesis of the phytaspase cleavage sites in prosystemin abrogated not only the phytaspase-mediated processing of the prohormone in vitro, but also the ability of prosystemin to trigger the systemic wound response in vivo. The data show that the prohormone prosystemin requires processing for signal biogenesis and biological activity. The identification of phytaspases as the proteases involved in prosystemin maturation provides insight into the mechanisms of wound signaling in tomato. Our data also suggest a novel role for cell death-related proteases in mediating defense signaling in plants.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , Peptides/metabolism , Plant Growth Regulators/metabolism , Protein Precursors/metabolism , Protein Processing, Post-Translational , Solanum lycopersicum/metabolism , Hydrolysis , Signal Transduction
16.
Nano Lett ; 17(4): 2381-2388, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28199122

ABSTRACT

We present a combined experimental and theoretical study of resonant Raman spectroscopy in single- and triple-layer MoTe2. Raman intensities are computed entirely from first-principles by calculating finite differences of the dielectric susceptibility. In our analysis, we investigate the role of quantum interference effects and the electron-phonon coupling. With this method, we explain the experimentally observed intensity inversion of the A1' vibrational modes in triple-layer MoTe2 with increasing laser photon energy. Finally, we show that a quantitative comparison with experimental data requires the proper inclusion of excitonic effects.

18.
ACS Appl Mater Interfaces ; 8(14): 9377-83, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26986938

ABSTRACT

We present a method to create and erase spatially resolved doping profiles in graphene-hexagonal boron nitride heterostructures. The technique is based on photoinduced doping by a focused laser beam and does neither require masks nor photoresists. This makes our technique interesting for rapid prototyping of unconventional electronic device schemes, where the spatial resolution of the rewritable, long-term stable doping profiles is limited by only the laser spot size (≈600 nm) and the accuracy of sample positioning. Our optical doping method offers a way to implement and to test different, complex doping patterns in one and the very same graphene device, which is not achievable with conventional gating techniques.

19.
Nano Lett ; 15(3): 1547-52, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25646665

ABSTRACT

Many-body effects resulting from strong electron-electron and electron-phonon interactions play a significant role in graphene physics. We report on their manifestation in low B field magneto-phonon resonances in high-quality exfoliated single-layer and bilayer graphene encapsulated in hexagonal boron nitride. These resonances allow us to extract characteristic effective Fermi velocities, as high as 1.20 × 10(6) m/s, for the observed "dressed" Landau level transitions, as well as the broadening of the resonances, which increases with the Landau level index.

SELECTION OF CITATIONS
SEARCH DETAIL
...