Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 380(6640): 93-101, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36926954

ABSTRACT

Although most cancer drugs modulate the activities of cellular pathways by changing posttranslational modifications (PTMs), little is known regarding the extent and the time- and dose-response characteristics of drug-regulated PTMs. In this work, we introduce a proteomic assay called decryptM that quantifies drug-PTM modulation for thousands of PTMs in cells to shed light on target engagement and drug mechanism of action. Examples range from detecting DNA damage by chemotherapeutics, to identifying drug-specific PTM signatures of kinase inhibitors, to demonstrating that rituximab kills CD20-positive B cells by overactivating B cell receptor signaling. DecryptM profiling of 31 cancer drugs in 13 cell lines demonstrates the broad applicability of the approach. The resulting 1.8 million dose-response curves are provided as an interactive molecular resource in ProteomicsDB.


Subject(s)
Antineoplastic Agents , Apoptosis , Protein Processing, Post-Translational , Proteomics , Antigens, CD20/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , B-Lymphocytes/drug effects , Cell Line, Tumor , DNA Damage , Protein Processing, Post-Translational/drug effects , Proteomics/methods , Receptors, Antigen, B-Cell/metabolism , Signal Transduction , Humans
2.
ACS Synth Biol ; 3(12): 990-4, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25524107

ABSTRACT

Heterologous enzymes and binding proteins were secreted by the moss Physcomitrella patens or anchored extracellularly on its cell membrane in order to functionalize the apoplast as a biochemical reaction compartment. This modular membrane anchoring system utilizes the signal peptide and the transmembrane segment of the somatic embryogenesis receptor-like kinase (SERK), which were identified in a comprehensive bioinformatic analysis of the P. patens genome. By fusing the soluble enzyme NanoLuc luciferase to the signal peptide, its secretion capability was confirmed in vivo. The membrane localization of hybrid proteins comprising the SERK signal peptide, NanoLuc or other functional modules, the SERK transmembrane anchor, and a C-terminal GFP reporter was demonstrated using fluorescence microscopy as well as site-specific proteolytic release of the extracellular enzyme domain. Our membrane anchoring system enables the expression of various functional proteins in the apoplast of P. patens, empowering this photoautotrophic organism for biotechnological applications.


Subject(s)
Bryopsida/chemistry , Membrane Proteins/chemistry , Plant Proteins/chemistry , Protein Engineering/methods , Recombinant Fusion Proteins/chemistry , Amino Acid Sequence , Binding Sites , Bryopsida/genetics , Bryopsida/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Sequence Data , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Sorting Signals , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...