Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36979856

ABSTRACT

Reconstruction of bone defects and maintaining the continuity of the mandible is still a challenge in the maxillofacial surgery. Nowadays, the biomedical research within bone defect treatment is focussed on the therapy of using innovative biomaterials with specific characteristics consisting of the body's own substances. Hydroxyapatite ceramic scaffolds have fully acceptable phase compositions, microstructures and compressive strengths for their use in regenerative medicine. The innovative hydroxyapatite ceramics used by us were prepared using the tape-casting method, which allows variation in the shape of samples after packing hydroxyapatite paste to 3D-printed plastic form. The purpose of our qualitative study was to evaluate the regenerative potential of the innovative ceramic biomaterial prepared using this method in the therapy of the cortical bone of the lower jaw in four mature pigs. The mandible bone defects were evaluated after different periods of time (after 3, 4, 5 and 6 months) and compared with the control sample (healthy cortical bone from the opposite side of the mandible). The results of the morphological, clinical and radiological investigation and hardness examination confirmed the positive regenerative potential of ceramic implants after treatment of the mandible bone defects in the porcine mandible model.

2.
Micromachines (Basel) ; 12(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34832692

ABSTRACT

Pattern recognition as a computing task is very well suited for machine learning algorithms utilizing artificial neural networks (ANNs). Computing systems using ANNs usually require some sort of data storage to store the weights and bias values for the processing elements of the individual neurons. This paper introduces a memory block using resistive memory cells (RRAM) to realize this weight and bias storage in an embedded and distributed way while also offering programming and multi-level ability. By implementing power gating, overall power consumption is decreased significantly without data loss by taking advantage of the non-volatility of the RRAM technology. Due to the versatility of the peripheral circuitry, the presented memory concept can be adapted to different applications and RRAM technologies.

3.
Exp Ther Med ; 16(6): 4927-4942, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30542449

ABSTRACT

The aim of the present study was to investigate the therapeutic efficacy of local hypothermia (beginning 30 min post-injury persisting for 5 h) on tissue preservation along the rostro-caudal axis of the spinal cord (3 cm cranially and caudally from the lesion site), and the prevention of injury-induced functional loss in a newly developed computer-controlled compression model in minipig (force of impact 18N at L3 level), which mimics severe spinal cord injury (SCI). Minipigs underwent SCI with two post-injury modifications (durotomy vs. intact dura mater) followed by hypothermia through a perfusion chamber with cold (epidural t≈15°C) saline, DMEM/F12 or enriched DMEM/F12 (SCI/durotomy group) and with room temperature (t≈24°C) saline (SCI-only group). Minipigs treated with post-SCI durotomy demonstrated slower development of spontaneous neurological improvement at the early postinjury time points, although the outcome at 9 weeks of survival did not differ significantly between the two SCI groups. Hypothermia with saline (t≈15°C) applied after SCI-durotomy improved white matter integrity in the dorsal and lateral columns in almost all rostro-caudal segments, whereas treatment with medium/enriched medium affected white matter integrity only in the rostral segments. Furthermore, regeneration of neurofilaments in the spinal cord after SCI-durotomy and hypothermic treatments indicated an important role of local saline hypothermia in the functional outcome. Although saline hypothermia (24°C) in the SCI-only group exhibited a profound histological outcome (regarding the gray and white matter integrity and the number of motoneurons) and neurofilament protection in general, none of the tested treatments resulted in significant improvement of neurological status. The findings suggest that clinically-proven medical treatments for SCI combined with early 5 h-long saline hypothermia treatment without opening the dural sac could be more beneficial for tissue preservation and neurological outcome compared with hypothermia applied after durotomy.

4.
Exp Ther Med ; 15(1): 254-270, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29399061

ABSTRACT

This study investigated the neuroprotective efficacy of local hypothermia in a minipig model of spinal cord injury (SCI) induced by a computer-controlled impactor device. The tissue integrity observed at the injury epicenter, and up to 3 cm cranially and caudally from the lesion site correlated with motor function. A computer-controlled device produced contusion lesions at L3 level with two different degrees of tissue sparing, depending upon pre-set impact parameters (8N- and 15N-force impact). Hypothermia with cold (4°C) saline or Dulbecco's modified Eagle's medium (DMEM)/F12 culture medium was applied 30 min after SCI (for 5 h) via a perfusion chamber (flow 2 ml/min). After saline hypothermia, the 8N-SCI group achieved faster recovery of hind limb function and the ability to walk from one to three steps at nine weeks in comparison with non-treated animals. Such improvements were not observed in saline-treated animals subjected to more severe 15N-SCI or in the group treated with DMEM/F12 medium. It was demonstrated that the tissue preservation in the cranial and caudal segments immediately adjacent to the lesion, and neurofilament protection in the lateral columns may be essential for modulation of the key spinal microcircuits leading to a functional outcome. Tissue sparing observed only in the caudal sections, even though significant, was not sufficient for functional improvement in the 15N-SCI model.

5.
Photomed Laser Surg ; 34(2): 53-5, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26741109

ABSTRACT

OBJECTIVE: The aim of our study was to evaluate, from a histological point of view, the effect of photobiomodulation (PBM) with combined low-level laser therapy (LLLT)/light- emitting diode (LED) on porcine skin wound healing. BACKGROUND DATA: Most LLLT/LED wound healing studies have been performed on various types of rat models, with their inherent limitations. Minipigs are evolutionary and physiologically closer to humans than rats. MATERIALS AND METHODS: With the animals under general anesthesia, one full-thickness skin incision was performed on the back of each minipig (n = 10) and immediately closed using simple interrupted percutaneous sutures. The minipigs were randomly allocated into two groups: a PBM-treated group (LLLT λ = 685 nm, LED λ = 470 nm, both light sources producing power densities at 0.008 W/cm2; each light source delivering total daily doses of 3.36 J/cm2) and a sham-irradiated control group. Half of the animals in each group were killed on postoperative day 3, and the other half were killed on the postoperative day 7, and samples were removed for histological examination. RESULTS: Combined red and blue PBM accelerated the process of re-epithelization and formation of cross-linked collagen fibers compared with sham irradiated control wounds. CONCLUSIONS: Our results demonstrate that the current dose of combined red and blue PBM improves the healing of sutured skin incisions in minipigs.


Subject(s)
Low-Level Light Therapy , Skin/injuries , Wound Healing/physiology , Animals , Female , Skin/pathology , Swine , Swine, Miniature
SELECTION OF CITATIONS
SEARCH DETAIL
...