Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
JBMR Plus ; 8(6): ziae050, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38699440

ABSTRACT

Cherubism (OMIM 118400) is a rare craniofacial disorder in children characterized by destructive jawbone expansion due to the growth of inflammatory fibrous lesions. Our previous studies have shown that gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2) are responsible for cherubism and that a knock-in mouse model for cherubism recapitulates the features of cherubism, such as increased osteoclast formation and jawbone destruction. To date, SH3BP2 is the only gene identified to be responsible for cherubism. Since not all patients clinically diagnosed with cherubism had mutations in SH3BP2, we hypothesized that there may be novel cherubism genes and that these genes may play a role in jawbone homeostasis. Here, using whole exome sequencing, we identified homozygous loss-of-function variants in the opioid growth factor receptor like 1 (OGFRL1) gene in 2 independent autosomal recessive cherubism families from Syria and India. The newly identified pathogenic homozygous variants were not reported in any variant databases, suggesting that OGFRL1 is a novel gene responsible for cherubism. Single cell analysis of mouse jawbone tissue revealed that Ogfrl1 is highly expressed in myeloid lineage cells. We generated OGFRL1 knockout mice and mice carrying the Syrian frameshift mutation to understand the in vivo role of OGFRL1. However, neither mouse model recapitulated human cherubism or the phenotypes exhibited by SH3BP2 cherubism mice under physiological and periodontitis conditions. Unlike bone marrow-derived M-CSF-dependent macrophages (BMMs) carrying the SH3BP2 cherubism mutation, BMMs lacking OGFRL1 or carrying the Syrian mutation showed no difference in TNF-ɑ mRNA induction by LPS or TNF-ɑ compared to WT BMMs. Osteoclast formation induced by RANKL was also comparable. These results suggest that the loss-of-function effects of OGFRL1 in humans differ from those in mice and highlight the fact that mice are not always an ideal model for studying rare craniofacial bone disorders.

2.
Res Sq ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38405920

ABSTRACT

Craniometaphyseal dysplasia (CMD), a rare craniotubular disorder, occurs in an autosomal dominant (AD) or autosomal recessive (AR) form. CMD is characterized by hyperostosis of craniofacial bones and flaring metaphyses of long bones. Many patients with CMD suffer from neurological symptoms. To date, the pathogenesis of CMD is not fully understood. Treatment is limited to decompression surgery. Here, we report a knock in (KI) mouse model for AR CMD carrying a R239Q mutation in CX43. Cx43KI/KI mice replicate many features of AR CMD in craniofacial and long bones. In contrast to Cx43+/+ littermates, Cx43KI/KI mice exhibit periosteal bone deposition and increased osteoclast (OC) numbers in the endosteum of long bones, leading to an expanded bone marrow cavity and increased cortical bone thickness. Although formation of Cx43+/+ and Cx43KI/KI resting OCs are comparable, on bone chips the actively resorbing Cx43KI/KI OCs resorb less bone. Cortical bones of Cx43KI/KI mice have an increase in degenerating osteocytes and empty lacunae. Osteocyte dendrite formation is decreased with reduced expression levels of Fgf23, Sost, Tnf-α, IL-1ß, Esr1, Esr2, and a lower Rankl/Opg ratio. Female Cx43KI/KI mice display a more severe phenotype. Sexual dimorphism in bone becomes more evident as mice age. Our data show that the CX43R239Q mutation results in mislocalization of CX43 protein and impairment of gap junction and hemichannel activity. Different from CX43 ablation mouse models, the CX43R239Q mutation leads to the AR CMD-like phenotype in Cx43KI/KI mice not only by loss-of-function but also via a not yet revealed dominant function.

3.
Clin Anat ; 37(3): 304-320, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37737444

ABSTRACT

Currently, over 500 rare genetic bone disorders are identified. These diseases are often accompanied by dental abnormalities, which are sometimes the first clue for an early diagnosis. However, not many dentists are sufficiently familiar with phenotypic abnormalities and treatment approaches when they encounter patients with rare diseases. Such patients often need dental treatment but have difficulties in finding a dentist who can treat them appropriately. Herein we focus on major dental phenotypes and summarize their potential causes and mechanisms, if known. We discuss representative diseases, dental treatments, and their effect on the oral health of patients and on oral health-related quality of life. This review can serve as a starting point for dentists to contribute to early diagnosis and further investigate the best treatment options for patients with rare disorders, with the goal of optimizing treatment outcomes.


Subject(s)
Bone Diseases , Rare Diseases , Humans , Quality of Life
4.
JBMR Plus ; 6(1): e10562, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35079675

ABSTRACT

Cherubism (CBM), characterized by expansile jawbones with multilocular fibrocystic lesions, is caused by gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2; mouse orthologue Sh3bp2). Loss of jawbone and dental integrity significantly decrease the quality of life for affected children. Treatment for CBM is limited to multiple surgeries to correct facial deformities. Despite significant advances made with CBM knockin (KI) mouse models (Sh3bp2 KI/KI ), the activation mechanisms of CBM lesions remain unknown because mutant mice do not spontaneously develop expansile jawbones. We hypothesize that bony inflammation of an unknown cause triggers jawbone expansion in CBM. To introduce jawbone inflammation in a spatiotemporally controlled manner, we exposed pulp of the first right mandibular molar of 6-week-old Sh3bp2 +/+ , Sh3bp2 KI/+ , and Sh3bp2 KI/KI mice. Bacterial invasion from the exposed pulp into root canals led to apical periodontitis in wild-type and mutant mice. The pathogen-associated molecular patterns (PAMPs)-induced inflammation of alveolar bone resulted in jawbone expansion in Sh3bp2 KI/+ and Sh3bp2 KI/KI mice. CBM-like lesions developed exacerbated inflammation with increased neutrophil, macrophage, and osteoclast numbers. These lesions displayed excessive neutrophil extracellular traps (NETs) compared to Sh3bp2 +/+ mice. Expression levels of IL-1ß, IL-6, and TNF-α were increased in periapical lesions of Sh3bp2 +/+ , Sh3bp2 KI/+ , and Sh3bp2 KI/KI mice and also in plasma and the left untreated mandibles (with no pulp exposure) of Sh3bp2 KI/KI mice, suggesting a systemic upregulation. Ablation of Tlr2/4 signaling or depletion of neutrophils by Ly6G antibodies ameliorated jawbone expansion induced by PAMPs in Sh3bp2 KI/KI mice. In summary, successful induction of CBM-like lesions in jaws of CBM mice is important for studying initiating mechanisms of CBM and for testing potential therapies. Our findings further emphasize a critical role of host immunity in the development of apical periodontitis and the importance of maintaining oral health in CBM patients. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

5.
Cell Reprogram ; 23(1): 1-13, 2021 02.
Article in English | MEDLINE | ID: mdl-33373529

ABSTRACT

Differentiation of keratinocytes from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) has become an important tool for wound healing research and for studying skin diseases in instances where patient cells are not available. Several keratinocyte differentiation protocols using hiPSC colony fragments or embryoid bodies have been published with some requiring prolonged time for differentiation or extended use of reagent cocktails. In this study, we present a simplified method to efficiently generate large numbers of uniformly differentiated keratinocytes in less than 4 weeks from singularized hiPSCs with differentiation factors, retinoic acid and bone morphogenetic protein 4 (BMP4). Low seeding density of singularized iPSCs results in keratinocyte cultures with minimum cell death during differentiation and up to 96% homogeneity for keratin 14-positive cells and low percentage of keratinocyte maturation markers, comparable to early passage primary keratinocytes. hiPSC-derived keratinocytes remain in a proliferative state, can be maintained for prolonged periods of time, and can be terminally differentiated under high calcium conditions in the same way as primary human keratinocytes. Moreover, coculturing hiPSC-derived fibroblasts and keratinocytes consistently formed organotypic 3D skin equivalents. Therefore, keratinocytes generated by this method are a viable source of cells for downstream applications.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation , Fibroblasts/cytology , Human Embryonic Stem Cells/cytology , Induced Pluripotent Stem Cells/cytology , Keratinocytes/cytology , Skin/cytology , Bone Morphogenetic Protein 4/metabolism , Cells, Cultured , Fibroblasts/metabolism , Human Embryonic Stem Cells/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Keratinocytes/metabolism , Skin/metabolism , Tretinoin/metabolism
6.
JBMR Plus ; 4(6): e10352, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32537546

ABSTRACT

Cherubism (OMIM#118400) is a craniofacial disorder characterized by destructive jaw expansion. Gain-of-function mutations in SH3-domain binding protein 2 (SH3BP2) are responsible for this rare disorder. We have previously shown that homozygous knock-in (KI) mice (Sh3bp2 KI/KI ) recapitulate human cherubism by developing inflammatory lesions in the jaw. However, it remains unknown why heterozygous KI mice (Sh3bp2 KI/+ ) do not recapitulate the excessive jawbone destruction in human cherubism, even though all mutations are heterozygous in humans. We hypothesized that Sh3bp2 KI/+ mice need to be challenged for developing exacerbated jawbone destruction and that bacterial stimulation in the oral cavity may be involved in the mechanism. In this study, we applied a ligature-induced periodontitis model to Sh3bp2 KI/+ mice to induce inflammatory alveolar bone destruction. Ligature placement induced alveolar bone resorption with gingival inflammation. Quantification of alveolar bone volume revealed that Sh3bp2 KI/+ mice developed more severe bone loss (male: 43.0% ± 10.6%, female: 42.6% ± 10.4%) compared with Sh3bp2 +/+ mice (male: 25.8% ± 4.0%, female: 30.9% ± 6.5%). Measurement of bone loss by the cement-enamel junction-alveolar bone crest distance showed no difference between Sh3bp2 KI/+ and Sh3bp2 +/+ mice. The number of osteoclasts on the alveolar bone surface was higher in male Sh3bp2 KI/+ mice, but not in females, compared with Sh3bp2 +/+ mice. In contrast, inflammatory cytokine levels in gingiva were comparable between Sh3bp2 KI/+ and Sh3bp2 +/+ mice with ligatures. Genetic deletion of the spleen tyrosine kinase in myeloid cells and antibiotic treatment suppressed alveolar bone loss in Sh3bp2 KI/+ mice, suggesting that increased osteoclast differentiation and function mediated by SYK and accumulation of oral bacteria are responsible for the increased alveolar bone loss in Sh3bp2 KI/+ mice with ligature-induced periodontitis. High amounts of oral bacterial load caused by insufficient oral hygiene could be a trigger for the initiation of jawbone destruction in human cherubism. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

7.
Bone ; 135: 115315, 2020 06.
Article in English | MEDLINE | ID: mdl-32165349

ABSTRACT

Cherubism is a rare genetic disorder caused primarily by mutations in SH3BP2 resulting in excessive bone resorption and fibrous tissue overgrowth in the lower portions of the face. Bone marrow derived cell cultures derived from a murine model of cherubism display poor osteogenesis and spontaneous osteoclast formation. To develop a deeper understanding for the potential underlying mechanisms contributing to these phenotypes in mice, we compared global gene expression changes in hematopoietic and mesenchymal cell populations between cherubism and wild type mice. In the hematopoietic population, not surprisingly, upregulated genes were significantly enriched for functions related to osteoclastogenesis. However, these upregulated genes were also significantly enriched for functions associated with inflammation including arachidonic acid/prostaglandin signaling, regulators of coagulation and autoinflammation, extracellular matrix remodeling, and chemokine expression. In the mesenchymal population, we observed down regulation of osteoblast and adventitial reticular cell marker genes. Regulators of BMP and Wnt pathway associated genes showed numerous changes in gene expression, likely implicating the down regulation of BMP signaling and possibly the activation of certain Wnt pathways. Analyses of the cherubism derived mesenchymal population also revealed interesting changes in gene expression related to inflammation including the expression of distinct granzymes, chemokines, and sulfotransferases. These studies reveal complex changes in gene expression elicited from a cherubic mutation in Sh3bp2 that are informative to the mechanisms responding to inflammatory stimuli and repressing osteogenesis. The outcomes of this work are likely to have relevance not only to cherubism, but other inflammatory conditions impacting the skeleton.


Subject(s)
Cherubism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cherubism/genetics , Disease Models, Animal , Gene Expression , Mice , Osteoclasts/metabolism
8.
J Bone Miner Res ; 35(10): 2070-2081, 2020 10.
Article in English | MEDLINE | ID: mdl-33463757

ABSTRACT

Craniometaphyseal dysplasia (CMD), a rare genetic bone disorder, is characterized by lifelong progressive thickening of craniofacial bones and metaphyseal flaring of long bones. The autosomal dominant form of CMD is caused by mutations in the progressive ankylosis gene ANKH (mouse ortholog Ank), encoding a pyrophosphate (PPi) transporter. We previously reported reduced formation and function of osteoblasts and osteoclasts in a knockin (KI) mouse model for CMD (AnkKI/KI) and in CMD patients. We also showed rapid protein degradation of mutant ANK/ANKH. Mutant ANK protein displays reduced PPi transport, which may alter the inorganic phosphate (Pi) and PPi ratio, an important regulatory mechanism for bone mineralization. Here we investigate whether reducing dietary Pi intake can ameliorate the CMD-like skeletal phenotype by comparing male and female Ank+/+ and AnkKI/KI mice exposed to a low (0.3%) and normal (0.7%) Pi diet for 13 weeks from birth. Serum Pi and calcium (Ca) levels were not significantly changed by diet, whereas PTH and 25-hydroxy vitamin D (25-OHD) were decreased by low Pi diet but only in male Ank+/+ mice. Importantly, the 0.3% Pi diet significantly ameliorated mandibular hyperostosis in both sexes of AnkKI/KI mice. A tendency of decreased femoral trabeculation was observed in male and female Ank+/+ mice as well as in male AnkKI/KI mice fed with the 0.3% Pi diet. In contrast, in female AnkKI/KI mice the 0.3% Pi diet resulted in increased metaphyseal trabeculation. This was also the only group that showed increased bone formation rate. Low Pi diet led to increased osteoclast numbers and increased bone resorption in all mice. We conclude that lowering but not depleting dietary Pi delays the development of craniofacial hyperostosis in CMD mice without severely compromising serum levels of Pi, Ca, PTH, and 25-OHD. These findings may have implications for better clinical care of patients with CMD. © 2020 American Society for Bone and Mineral Research.


Subject(s)
Diet , Hyperostosis/therapy , Phosphates/administration & dosage , Animals , Bone Diseases, Developmental , Craniofacial Abnormalities , Disease Models, Animal , Female , Gene Knock-In Techniques , Humans , Hypertelorism , Male , Mice , Phosphate Transport Proteins/genetics
9.
J Bone Miner Res ; 35(2): 382-395, 2020 02.
Article in English | MEDLINE | ID: mdl-31613396

ABSTRACT

Periodontitis is a bacterially induced chronic inflammatory condition of the oral cavity where tooth-supporting tissues including alveolar bone are destructed. Previously, we have shown that the adaptor protein SH3-domain binding protein 2 (SH3BP2) plays a critical role in inflammatory response and osteoclastogenesis of myeloid lineage cells through spleen tyrosine kinase (SYK). In this study, we show that SH3BP2 is a novel regulator for alveolar bone resorption in periodontitis. Micro-CT analysis of SH3BP2-deficient (Sh3bp2 -/- ) mice challenged with ligature-induced periodontitis revealed that Sh3bp2 -/- mice develop decreased alveolar bone loss (male 14.9% ± 10.2%; female 19.0% ± 6.0%) compared with wild-type control mice (male 25.3% ± 5.8%; female 30.8% ± 5.8%). Lack of SH3BP2 did not change the inflammatory cytokine expression and osteoclast induction. Conditional knockout of SH3BP2 and SYK in myeloid lineage cells with LysM-Cre mice recapitulated the reduced bone loss without affecting both inflammatory cytokine expression and osteoclast induction, suggesting that the SH3BP2-SYK axis plays a key role in regulating alveolar bone loss by mechanisms that regulate the bone-resorbing function of osteoclasts rather than differentiation. Administration of a new SYK inhibitor GS-9973 before or after periodontitis induction reduced bone resorption without affecting inflammatory reaction in gingival tissues. In vitro, GS-9973 treatment of bone marrow-derived M-CSF-dependent macrophages suppressed tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation with decreased mineral resorption capacity even when GS-9973 was added after RANKL stimulation. Thus, the data suggest that SH3BP2-SYK is a novel signaling axis for regulating alveolar bone loss in periodontitis and that SYK can be a potential therapeutic target to suppress alveolar bone resorption in periodontal diseases. © 2019 American Society for Bone and Mineral Research. © 2019 American Society for Bone and Mineral Research.


Subject(s)
Alveolar Bone Loss , Osteoclasts , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Bone and Bones/metabolism , Cell Differentiation , Female , Male , Mice , Mice, Inbred C57BL , Osteoclasts/metabolism , RANK Ligand/metabolism , Tartrate-Resistant Acid Phosphatase
10.
Oral Surg Oral Med Oral Pathol Oral Radiol ; 128(5): e191-e201, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30904497

ABSTRACT

Cherubism is a rare autosomal dominant disorder characterized by replacement of bone with fibrous tissue containing multinucleated giant cells. It manifests as bilateral mandibular and/or maxillary enlargement. The 2017 World Health Organization classification lists cherubism as a giant cell lesion of the jaws, distinct from fibro-osseous disorders. We discuss 3 cases of familial cherubism having aggressive characteristics and present clinicoradiologic evaluations of the lesions over 12, 18, and 1.5 years, respectively. Follow-up was observational, without active intervention. Analysis of the lesions for change in size and functional impairments was correlated with periodic imaging. All patients are currently being monitored. The outcome in 2 cases has been excellent without intervention, but 1 case had extensive involvement of the jaws and involvement of the condyle and orbit. A secondary giant cell lesion involved the palate in one patient's mother, who had had cherubic lesions in childhood.


Subject(s)
Cherubism , Cherubism/diagnostic imaging , Cherubism/pathology , Child , Follow-Up Studies , Humans , Jaw/diagnostic imaging , Jaw/pathology , Mandible/diagnostic imaging , Mandible/pathology
11.
Calcif Tissue Int ; 104(6): 679-689, 2019 06.
Article in English | MEDLINE | ID: mdl-30712070

ABSTRACT

Gnathodiaphyseal dysplasia (GDD; OMIM#166260) is a rare skeletal disorder which is mainly characterized by cemento-osseous lesions in mandibles, bone fragility, bowing and diaphyseal sclerosis of tubular bones. GDD is caused by point mutations in Anoctamin-5 (ANO5); however, the disease mechanisms remain unclear. Here we generated Ano5-knockout (KO) mice using a CRISPR/Cas 9 approach to study loss of function aspects of GDD mutations. Homozygous Ano5 knockout mice (Ano5-/-) replicate some typical traits of human GDD including massive jawbones, bowing tibia, sclerosis and cortical thickening of femoral and tibial diaphyses. Serum alkaline phosphatase (ALP) levels were elevated in Ano5-/- mice as in GDD patients. Calvaria-derived Ano5-/- osteoblast cultures show increased osteoblastogenesis, which is consistent with our previous in vitro observations. Bone matrix is hypermineralized, and the expression of bone formation-related factors is enhanced in Ano5-/- mice, suggesting that the osteogenic anomaly arises from a genetic disruption of Ano5. We believe this new mouse model will shed more light on the development of skeletal abnormalities in GDD on a cellular and molecular level.


Subject(s)
Anoctamins/genetics , Disease Models, Animal , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/pathology , Animals , Animals, Newborn , Bone and Bones/pathology , Cells, Cultured , Female , Gene Deletion , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/pathology , Osteoblasts/physiology , Phenotype
12.
Sci Rep ; 8(1): 15710, 2018 10 24.
Article in English | MEDLINE | ID: mdl-30356088

ABSTRACT

Mutations in the progressive ankylosis protein (NP_473368, human ANKH) cause craniometaphyseal dysplasia (CMD), characterized by progressive thickening of craniofacial bones and widened metaphyses in long bones. The pathogenesis of CMD remains largely unknown, and treatment for CMD is limited to surgical intervention. We have reported that knock-in mice (AnkKI/KI) carrying a F377del mutation in ANK (NM_020332, mouse ANK) replicate many features of CMD. Interestingly, ablation of the Ank gene in AnkKO/KO mice also leads to several CMD-like phenotypes. Mutations causing CMD led to decreased steady-state levels of ANK/ANKH protein due to rapid degradation. While wild type (wt) ANK was mostly associated with plasma membranes, endoplasmic reticulum (ER), Golgi apparatus and lysosomes, CMD-linked mutant ANK was aberrantly localized in cytoplasm. Inhibitors of proteasomal degradation significantly restored levels of overexpressed mutant ANK, whereas endogenous CMD-mutant ANK/ANKH levels were more strongly increased by inhibitors of lysosomal degradation. However, these inhibitors do not correct the mislocalization of mutant ANK. Co-expressing wt and CMD-mutant ANK in cells showed that CMD-mutant ANK does not negatively affect wt ANK expression and localization, and vice versa. In conclusion, our finding that CMD mutant ANK/ANKH protein is short-lived and mislocalized in cells may be part of the CMD pathogenesis.


Subject(s)
Bone Diseases, Developmental/etiology , Craniofacial Abnormalities/etiology , Hyperostosis/etiology , Hypertelorism/etiology , Phosphate Transport Proteins/metabolism , Animals , Bone Diseases, Developmental/genetics , Cells, Cultured , Craniofacial Abnormalities/genetics , Humans , Hyperostosis/genetics , Hypertelorism/genetics , Mice , Mutation , Phosphate Transport Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Rats , Saccharomyces cerevisiae , Ubiquitination
13.
J Bone Miner Res ; 33(8): 1513-1519, 2018 08.
Article in English | MEDLINE | ID: mdl-29669173

ABSTRACT

Cherubism is a craniofacial disorder characterized by maxillary and mandibular bone destruction. Gain-of-function mutations in the SH3-domain binding protein 2 (SH3BP2) are responsible for the excessive bone resorption caused by fibrous inflammatory lesions. A homozygous knock-in (KI) mouse model for cherubism (Sh3bp2KI/KI ) develops autoinflammation resulting in systemic bone destruction. Although administration of the TNF-α blocker etanercept to neonatal Sh3bp2KI/KI mice prevented the disease onset, this therapy was not effective for adult Sh3bp2KI/KI mice or human cherubism patients who already had lesions. Because genetic ablation of spleen tyrosine kinase (SYK) in myeloid cells rescues Sh3bp2KI/KI mice from inflammation, we examined whether SYK inhibitor administration can improve fully developed cherubism symptoms in adult Sh3bp2KI/KI mice. Entospletinib (GS-9973) was intraperitoneally injected into 10-week-old Sh3bp2KI/KI mice every day for 6 weeks. Treatment with GS-9973 improved facial swelling and histomorphometric analysis of lung and liver tissue showed that GS-9973 administration significantly reduced inflammatory infiltrates associated with decreased levels of serum TNF-α. Micro-computed tomography (µCT) analysis showed that GS-9973 treatment reduced bone erosion in mandibles, calvariae, and ankle and elbow joints of Sh3bp2KI/KI mice compared to Sh3bp2KI/KI mice treated with dimethyl sulfoxide (DMSO). Taken together, the results demonstrate that administration of the SYK inhibitor ameliorates an already established cherubism phenotype in mice, suggesting that pharmacological inhibition of SYK may be a treatment option for cherubism patients with active disease progression. © 2018 American Society for Bone and Mineral Research.


Subject(s)
Bone and Bones/pathology , Cherubism/drug therapy , Indazoles/therapeutic use , Inflammation/drug therapy , Protein Kinase Inhibitors/therapeutic use , Pyrazines/therapeutic use , Syk Kinase/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Animals , Bone and Bones/drug effects , Cherubism/complications , Disease Models, Animal , Indazoles/administration & dosage , Indazoles/pharmacology , Inflammation/complications , Inflammation/pathology , Mice , Protein Kinase Inhibitors/pharmacology , Pyrazines/administration & dosage , Pyrazines/pharmacology , Syk Kinase/metabolism
14.
Bone ; 111: 28-35, 2018 06.
Article in English | MEDLINE | ID: mdl-29530719

ABSTRACT

We utilized a bone marrow stromal culture system to investigate changes in TGFß signaling in a mouse model for cherubism (Sh3bp2KI/KI). Interestingly, bone marrow cultures derived from cherubism mice not only displayed impaired osteoblast differentiation, but also had spontaneous osteoclast formation. PAI1, a target gene of TGFß signaling, was elevated 2-fold in cherubism CD11b-,CD45- cells compared to wild type cells, while the expression of BAMBI, an inhibitor of TGFß signaling, was down-regulated. We also discovered that treatment of cherubism cultures with antagonists of the TGFß signaling pathway could largely rescue osteoblast differentiation and markedly reduce spontaneous osteoclast formation. Treatment with the type I TGFß receptor small molecule inhibitor SB505124 increased osteoblast reporter gene Col1a1-2.3 expression 24-fold and increased the expression of osteoblast gene markers Osterix (Sp7) 25-fold, Bone Sialoprotein (BSP) 7-fold, Osteocalcin (Bglap1) 100-fold, and Dentin Matrix Protein 1 (DMP1) 35-fold. In contrast, SB505124 treatment resulted in a significant reductions in osteoclast number and size. Gene expression analyses for RANKL, a positive regulator of osteoclast formation was 2.5-fold higher in osteoblast cultures derived from Sh3bp2KI/KI mice compared to wild type cultures, whereas OPG, an inhibitor of RANKL was 5-fold lower. However, SB505124 treatment reduced RANKL almost back down to wild type levels, while increasing OPG expression. Our studies also implicate a role for TGFß ligands in the etiology of cherubism. Blocking of TGFß ligands with the monoclonal antibody 1D11 increased Col1a1-2.3 reporter expression 4-fold and 13-fold in cultures derived from Sh3bp2KI/+ and Sh3bp2KI/KI mice, respectively. Serum levels of latent TGFß1 were also 2-fold higher in SH3BP2KI/KI mice compared to wild type littermates. Taken together, these studies provide evidence that elevated levels of TGFß signaling may contribute to the disease phenotype of cherubism and a reduction in pathway activity may be an effective therapeutic approach to treat this rare disease.


Subject(s)
Benzodioxoles/therapeutic use , Cherubism/drug therapy , Cherubism/pathology , Imidazoles/therapeutic use , Pyridines/therapeutic use , Transforming Growth Factor beta/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Animals , Benzodioxoles/pharmacology , Bone Marrow Cells/cytology , Bone Resorption , Cell Differentiation/genetics , Cells, Cultured , Disease Models, Animal , Femur/cytology , Genetic Markers/genetics , Imidazoles/pharmacology , Membrane Proteins/genetics , Mice , Molecular Targeted Therapy , Osteoblasts/cytology , Osteoclasts/cytology , Osteogenesis , Phenotype , Pyridines/pharmacology , RANK Ligand/genetics , Stromal Cells , Tibia/cytology , Transforming Growth Factor beta/physiology
15.
Head Neck Pathol ; 12(1): 136-144, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28721660

ABSTRACT

Cherubism is a rare autosomal dominant condition affecting the jaws and caused by mutations in the gene encoding for the adapter protein SH3BP2 that maps to chromosome 4p16.3. Cherubism is characterized by symmetrically developing bone lesions in the maxilla and mandible. The lesions have been radiographically and histopathologically well-described. Here, we present a family with cherubism with two of its members featuring odontogenic tumorous proliferations in association with persistent central giant cell lesions (CGCL). Specifically, the proband, a 25-year-old male, developed a radiolucent lesion characterized histologically by central odontogenic fibroma-like proliferation in association with a CGCL component, while his mother, at age 57, was diagnosed with primary intraosseous odontogenic carcinoma with areas of benign fibro-osseous lesions. In both patients the lesions occurred in the anterior mandible and presented with clinical enlargement. The son underwent incisional biopsy and did not have additional treatment. His mother underwent extensive mandibulectomy due to widespread tumor. The son has two affected children with classic cherubism while a third child at age 5, had not shown any features of the disease. Mutation analysis of three affected members resulted in the identification of a heterozygous mutation in SH3BP2 (c.1244G>C; p.Arg415Pro). To the best of our knowledge, association of cherubism with odontogenic neoplastic lesions has hitherto not been reported in the literature, thus suggesting a relationship between cherubism with disturbed odontogenesis.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cherubism/complications , Mandibular Neoplasms/pathology , Odontogenic Tumors/pathology , Adult , Cell Proliferation , Cherubism/genetics , Female , Humans , Male , Mandibular Neoplasms/genetics , Middle Aged , Mutation , Odontogenic Tumors/genetics , Pedigree
16.
Stem Cell Reports ; 9(5): 1369-1376, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29056330

ABSTRACT

We identified osteoclast defects in craniometaphyseal dysplasia (CMD) using an easy-to-use protocol for differentiating osteoclasts from human induced pluripotent stem cells (hiPSCs). CMD is a rare genetic bone disorder, characterized by life-long progressive thickening of craniofacial bones and abnormal shape of long bones. hiPSCs from CMD patients with an in-frame deletion of Phe377 or Ser375 in ANKH are more refractory to in vitro osteoclast differentiation than control hiPSCs. To exclude differentiation effects due to genetic variability, we generated isogenic hiPSCs, which have identical genetic background except for the ANKH mutation. Isogenic hiPSCs with ANKH mutations formed fewer osteoclasts, resorbed less bone, expressed lower levels of osteoclast marker genes, and showed decreased protein levels of ANKH and vacuolar proton pump v-ATP6v0d2. This proof-of-concept study demonstrates that efficient and reproducible differentiation of isogenic hiPSCs into osteoclasts is possible and a promising tool for investigating mechanisms of CMD or other osteoclast-related disorders.


Subject(s)
Bone Diseases, Developmental/genetics , Cell Differentiation , Craniofacial Abnormalities/genetics , Hyperostosis/genetics , Hypertelorism/genetics , Induced Pluripotent Stem Cells/cytology , Osteoclasts/cytology , Phosphate Transport Proteins/genetics , Adult , Cells, Cultured , Child , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Mutation , Osteoclasts/metabolism
17.
Eur J Hum Genet ; 25(10): 1155-1161, 2017 10.
Article in English | MEDLINE | ID: mdl-28905881

ABSTRACT

Keloids result from abnormal proliferative scar formation with scar tissue expanding beyond the margin of the original wound and are mostly found in individuals of sub-Saharan African descent. The etiology of keloids has not been resolved but previous studies suggest that keloids are a genetically heterogeneous disorder. Although possible candidate genes have been suggested by genome-wide association studies using common variants, by upregulation in keloids or their involvement in syndromes that include keloid formation, rare coding variants that contribute to susceptibility in non-syndromic keloid formation have not been previously identified. Through analysis of whole-genome data we mapped a locus to chromosome 8p23.3-p21.3 with a statistically significant maximum multipoint LOD score of 4.48. This finding was followed up using exome sequencing and led to the identification of a c.1202T>C (p.(Leu401Pro)) variant in the N-acylsphingosine amidohydrolase (ASAH1) gene that co-segregates with the keloid phenotype in a large Yoruba family. ASAH1 is an acid ceramidase known to be involved in tumor formation by controlling the ratio of ceramide and sphingosine. ASAH1 is also involved in cell proliferation and inflammation, and may affect the development of keloids via multiple mechanisms. Functional studies need to clarify the role of the ASAH1 variant in wound healing.


Subject(s)
Acid Ceramidase/genetics , Keloid/genetics , Mutation, Missense , Adult , Female , Humans , Keloid/diagnosis , Male , Pedigree
18.
Sci Rep ; 7: 40935, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28176803

ABSTRACT

Gnathodiaphyseal dysplasia (GDD; MIM#166260) is an autosomal dominant syndrome with characteristic cemento-osseous lesions of jawbones, bone fragility, and diaphyseal sclerosis of tubular bones. To date, only five mutations in the proposed calcium-activated chloride channel ANO5/TMEM16E gene have been identified. In this study, we describe two families and two singular patients with three new mutations. One Caucasian family with seven affected members exhibited frequent bone fractures and florid osseous dysplasia (p.Cys356Tyr), while one Chinese family with two affected members suffered from cementoma and purulent osteomyelitis (p.Cys360Tyr). In addition, two different novel mutations (p.Gly518Glu and p.Arg215Gly) were identified in sporadic patients without family history. In vitro studies overexpressing GDD mutations (p.Cys356Tyr and p.Cys360Tyr) showed significantly reduced ANO5 protein. It appears that all GDD mutations known so far locate in an extracellular domain following the first transmembrane domain or in the 4th putative transmembrane domain. Both wild-type and mutant ANO5 protein localize to the endoplasmic reticulum. After Ano5 gene knock-down with shRNA in MC3T3-E1 osteoblast precursors we saw elevated expression of osteoblast-related genes such as Col1a1, osteocalcin, osterix and Runx2 as well as increased mineral nodule formation in differentiating cells. Our data suggest that ANO5 plays a role in osteoblast differentiation.


Subject(s)
Anoctamins/genetics , Mutation, Missense , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/pathology , Adolescent , Adult , Aged , Asian People , Child , Child, Preschool , Family Health , Female , Humans , Male , White People
19.
J Negat Results Biomed ; 15(1): 18, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27784318

ABSTRACT

BACKGROUND: Mutations in the human progressive ankylosis gene (ANKH; Mus musculus ortholog Ank) have been identified as cause for craniometaphyseal dysplasia (CMD), characterized by progressive thickening of craniofacial bones and flared metaphyses of long bones. We previously reported a knock-in (KI) mouse model (Ank KI/KI) for CMD and showed transiently lower serum phosphate (Pi) as well as significantly higher mRNA levels of fibroblast growth factor 23 (Fgf23) in Ank KI/KI mice. FGF23 is secreted by bone and acts in kidney to promote Pi wasting which leads to lower serum Pi levels. Here, we examined whether increasing the Pi level can partially rescue the CMD-like skeletal phenotype by feeding Ank +/+ and Ank KI/KI mice with high Pi (1.7 %) diet from birth for 6 weeks. We studied the Pi metabolism in Ank KI/KI mice and CMD patients by examining the Pi regulators FGF23 and parathyroid hormone (PTH). RESULTS: High Pi diet did not correct CMD-like features, including massive jawbone, increased endosteal and periosteal perimeters and extensive trabeculation of femurs in Ank KI/KI mice shown by computed microtomography (µCT). This unexpected negative result is, however, consistent with normal serum/plasma levels of the intact/active form of FGF23 and PTH in Ank KI/KI mice and in CMD patients. In addition, FGF23 protein expression was unexpectedly normal in Ank KI/KI femoral cortical bone as shown by immunohistochemistry despite increased mRNA levels for Fgf23. Renal expression of genes involved in the FGF23 bone-kidney axis, including mFgfr1, mKlotho, mNpt2a, mCyp24a1 and m1αOHase, were comparable between Ank +/+ and Ank KI/KI mice as shown by quantitative real-time PCR. Different from normal FGF23 and PTH, serum 25-hydroxyvitamin D was significantly lower in Ank KI/KI mice and vitamin D insufficiency was found in four out of seven CMD patients. CONCLUSIONS: Our data suggests that FGF23 signaling and Pi metabolism are not significantly affected in CMD and transiently low Pi level is not a major contributor to CMD.


Subject(s)
Bone Diseases, Developmental/drug therapy , Bone and Bones/pathology , Craniofacial Abnormalities/drug therapy , Diet , Dietary Supplements , Hyperostosis/drug therapy , Hypertelorism/drug therapy , Phosphates/therapeutic use , Adolescent , Animals , Body Weight/drug effects , Bone Diseases, Developmental/blood , Bone Diseases, Developmental/genetics , Bone and Bones/diagnostic imaging , Bone and Bones/drug effects , Child , Craniofacial Abnormalities/blood , Craniofacial Abnormalities/genetics , Disease Models, Animal , Female , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/metabolism , Gene Expression Regulation/drug effects , Humans , Hyperostosis/blood , Hyperostosis/genetics , Hypertelorism/blood , Hypertelorism/genetics , Kidney/drug effects , Kidney/metabolism , Male , Mice, Inbred C57BL , Middle Aged , Organ Size/drug effects , Parathyroid Hormone/blood , Phenotype , Phosphates/pharmacology , Vitamin D/analogs & derivatives , Vitamin D/blood , X-Ray Microtomography
20.
Cell Rep ; 8(6): 1752-1766, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25220465

ABSTRACT

Cherubism is caused by mutations in SH3BP2. Studies of cherubism mice showed that tumor necrosis factor α (TNF-α)-dependent autoinflammation is a major cause of the disorder but failed to explain why human cherubism lesions are restricted to jaws and regress after puberty. We demonstrate that the inflammation in cherubism mice is MYD88 dependent and is rescued in the absence of TLR2 and TLR4. However, germ-free cherubism mice also develop inflammation. Mutant macrophages are hyperresponsive to PAMPs (pathogen-associated molecular patterns) and DAMPs (damage-associated molecular patterns) that activate Toll-like receptors (TLRs), resulting in TNF-α overproduction. Phosphorylation of SH3BP2 at Y183 is critical for the TNF-α production. Finally, SYK depletion in macrophages prevents the inflammation. These data suggest that the presence of a large amount of TLR ligands, presumably oral bacteria and DAMPs during jawbone remodeling, may cause the jaw-specific development of human cherubism lesions. Reduced levels of DAMPs after stabilization of jaw remodeling may contribute to the age-dependent regression.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cherubism/etiology , Inflammation , Myeloid Differentiation Factor 88/metabolism , Signal Transduction , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Jaw/diagnostic imaging , Liver/pathology , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Protein-Tyrosine Kinases/deficiency , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , RNA, Messenger/metabolism , Radiography , Syk Kinase , Toll-Like Receptor 2/chemistry , Toll-Like Receptor 4/chemistry , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...