Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 74(10): 2356-2362, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29194949

ABSTRACT

BACKGROUND: Synthetic auxins such as 2,4-dichlorophenoxyacetic acid (2,4-D) have been widely used for selective control of broadleaf weeds since the mid-1940s. In 2009, an Amaranthus tuberculatus (common waterhemp) population with 10-fold resistance to 2,4-D was found in Nebraska, USA. The 2,4-D resistance mechanism was examined by conducting [14 C] 2,4-D absorption, translocation and metabolism experiments. RESULTS: No differences were found in 2,4-D absorption or translocation between resistant and susceptible A. tuberculatus plants. Resistant plants metabolized [14 C] 2,4-D more rapidly than did susceptible plants. The half-life of [14 C] 2,4-D in susceptible plants was 105 h, compared with 22 h in resistant plants. Pretreatment with the cytochrome P450 inhibitor malathion inhibited [14 C] 2,4-D metabolism in resistant plants and reduced the 2,4-D dose required for 50% growth inhibition (GR50 ) of resistant plants by 7-fold to 27 g ha-1 , similar to the GR50 for susceptible plants in the absence of malathion. CONCLUSION: Our results demonstrate that rapid 2,4-D metabolism is a contributing factor to resistance in A. tuberculatus, potentially mediated by cytochrome P450. Metabolism-based resistance to 2,4-D could pose a serious challenge for A. tuberculatus control because of the potential for cross-resistance to other herbicides. © 2017 Society of Chemical Industry.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/pharmacology , Amaranthus/drug effects , Amaranthus/metabolism , Herbicide Resistance , Herbicides/pharmacology , Biological Transport , Nebraska , Plant Weeds/drug effects , Plant Weeds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...