Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39005434

ABSTRACT

Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomics resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomics resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, anti- predator strategies, and resilience and adaptive responses. They also serve as critical models for understanding widespread genomic characteristics, including evolutionary genome expansions and contractions given they have the largest range in genome sizes of any animal taxon and multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The advent of long-read sequencing technologies, along with computational techniques that enhance scaffolding capabilities and streamline computational workload is now enabling the ability to overcome some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC) in early 2023. This burgeoning community already has more than 282 members from 41 countries (6 in Africa, 131 in the Americas, 27 in Asia, 29 in Australasia, and 89 in Europe). The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and outline how the AGC can enable amphibian genomics research to "leap" to the next level.

2.
Philos Trans R Soc Lond B Biol Sci ; 379(1905): 20230186, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38768210

ABSTRACT

Communication takes place within a network of multiple signallers and receivers. Social network analysis provides tools to quantify how an individual's social positioning affects group dynamics and the subsequent biological consequences. However, network analysis is rarely applied to animal communication, likely due to the logistical difficulties of monitoring natural communication networks. We generated a simulated communication network to investigate how variation in individual communication behaviours generates network effects, and how this communication network's structure feeds back to affect future signalling interactions. We simulated competitive acoustic signalling interactions among chorusing individuals and varied several parameters related to communication and chorus size to examine their effects on calling output and social connections. Larger choruses had higher noise levels, and this reduced network density and altered the relationships between individual traits and communication network position. Hearing sensitivity interacted with chorus size to affect both individuals' positions in the network and the acoustic output of the chorus. Physical proximity to competitors influenced signalling, but a distinctive communication network structure emerged when signal active space was limited. Our model raises novel predictions about communication networks that could be tested experimentally and identifies aspects of information processing in complex environments that remain to be investigated. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.


Subject(s)
Auditory Perception , Animals , Auditory Perception/physiology , Vocalization, Animal/physiology , Animal Communication , Models, Biological , Birds/physiology , Acoustics , Social Behavior
3.
Evolution ; 78(6): 1150-1160, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38525953

ABSTRACT

Understanding the evolution of traits subject to trade-offs is challenging because phenotypes can (co)vary at both the among- and within-individual levels. Among-individual covariation indicates consistent, possibly genetic, differences in how individuals resolve the trade-off, while within-individual covariation indicates trait plasticity. There is also the potential for consistent among-individual differences in behavioral plasticity, although this has rarely been investigated. We studied the sources of (co)variance in two characteristics of an acoustic advertisement signal that trade-off with one another and are under sexual selection in the gray treefrog, Hyla chrysoscelis: call duration and call rate. We recorded males on multiple nights calling spontaneously and in response to playbacks simulating different competition levels. Call duration, call rate, and their product, call effort, were all repeatable both within and across social contexts. Call duration and call rate covaried negatively, and the largest covariance was at the among-individual level. There was extensive plasticity in calling with changes in social competition, and we found some evidence for among-individual variance in call rate plasticity. The significant negative among-individual covariance in trait values is perpendicular to the primary direction of sexual selection in this species, indicating potential limits on the response to selection.


Subject(s)
Vocalization, Animal , Animals , Male , Sexual Selection , Hylobatidae/genetics , Hylobatidae/physiology , Mating Preference, Animal , Phenotype
4.
Proc Natl Acad Sci U S A ; 120(30): e2300186120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37459523

ABSTRACT

Parasites exert a profound effect on biological processes. In animal communication, parasite effects on signalers are well-known drivers of the evolution of communication systems. Receiver behavior is also likely to be altered when they are parasitized or at risk of parasitism, but these effects have received much less attention. Here, we present a broad framework for understanding the consequences of parasitism on receivers for behavioral, ecological, and evolutionary processes. First, we outline the different kinds of effects parasites can have on receivers, including effects on signal processing from the many parasites that inhabit, occlude, or damage the sensory periphery and the central nervous system or that affect physiological processes that support these organs, and effects on receiver response strategies. We then demonstrate how understanding parasite effects on receivers could answer important questions about the mechanistic causes and functional consequences of variation in animal communication systems. Variation in parasitism levels is a likely source of among-individual differences in response to signals, which can affect receiver fitness and, through effects on signaler fitness, impact population levels of signal variability. The prevalence of parasitic effects on specific sensory organs may be an important selective force for the evolution of elaborate and multimodal signals. Finally, host-parasite coevolution across heterogeneous landscapes will generate geographic variation in communication systems, which could ultimately lead to evolutionary divergence. We discuss applications of experimental techniques to manipulate parasitism levels and point the way forward by calling for integrative research collaborations between parasitologists, neurobiologists, and behavioral and evolutionary ecologists.


Subject(s)
Parasites , Animals , Host-Parasite Interactions/physiology , Animal Communication , Symbiosis , Altruism , Biological Evolution
5.
Mol Ecol ; 32(12): 3322-3339, 2023 06.
Article in English | MEDLINE | ID: mdl-36906957

ABSTRACT

The gut microbiota have important consequences for host biological processes and there is some evidence that they also affect fitness. However, the complex, interactive nature of ecological factors that influence the gut microbiota has scarcely been investigated in natural populations. We sampled the gut microbiota of wild great tits (Parus major) at different life stages allowing us to evaluate how microbiota varied with respect to a diverse range of key ecological factors of two broad types: (1) host state, namely age and sex, and the life history variables, timing of breeding, fecundity and reproductive success; and (2) the environment, including habitat type, the distance of the nest to the woodland edge, and the general nest and woodland site environments. The gut microbiota varied with life history and the environment in many ways that were largely dependent on age. Nestlings were far more sensitive to environmental variation than adults, pointing to a high degree of flexibility at an important time in development. As nestlings developed their microbiota from one to two weeks of life, they retained consistent (i.e., repeatable) among-individual differences. However these apparent individual differences were driven entirely by the effect of sharing the same nest. Our findings point to important early windows during development in which the gut microbiota are most sensitive to a variety of environmental drivers at multiple scales, and suggest reproductive timing, and hence potentially parental quality or food availability, are linked with the microbiota. Identifying and explicating the various ecological sources that shape an individual's gut bacteria is of vital importance for understanding the gut microbiota's role in animal fitness.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Passeriformes , Animals , Gastrointestinal Microbiome/genetics , Bacteria , Fertility
6.
Proc Biol Sci ; 289(1984): 20221306, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36196544

ABSTRACT

The sensory bias hypothesis proposes that female preferences for male sexual signalling traits evolved in contexts other than mating. Individuals of both sexes may experience similar selection pressures in these contexts; thus males may have similar biases to females for variation in signal traits. We tested this prediction in the grey treefrog, Hyla chrysoscelis, in which males produce simple advertisement calls, but females are more attracted to certain novel complex stimuli. We recorded males' responses to playbacks of both simple advertisement calls and complex calls consisting of the advertisement call with an acoustic appendage (filtered noise, or heterospecific call pulses) either leading or following the call. We tested females' preferences for the same stimuli in phonotaxis tests. We found evidence for a sensory bias in both sexes: males gave more aggressive calls in response to complex stimuli and females sometimes preferred complex over simple calls. These biases were not universal and depended on both temporal order and appendage characteristics, but how these effects manifested differed between the sexes. Ultimately, our approach of studying biases of both sexes in response to novel mating signals will shed light on the origin of mating preferences, and the mechanisms by which sensory biases operate.


Subject(s)
Sexual Behavior, Animal , Vocalization, Animal , Acoustics , Animals , Anura/physiology , Bias , Female , Humans , Male , Sexual Behavior, Animal/physiology , Vocalization, Animal/physiology
7.
Learn Behav ; 50(1): 153-166, 2022 03.
Article in English | MEDLINE | ID: mdl-35015239

ABSTRACT

Behavioural flexibility allows animals to adjust to changes in their environment. Although the cognitive processes that explain flexibility have been relatively well studied in psychology, this is less true for animals in the wild. Here we use data collected automatically during self-administered discrimination-learning trials for two passerine species, and during four phases (habituation, initial learning, first reversal and second reversal) in order to decompose sources of consistent among-individual differences in reversal learning, a commonly used measure for cognitive flexibility. First, we found that, as expected, proactive interference was significantly repeatable and had a negative effect on reversal learning, confirming that individuals with poor ability to inhibit returning to a previously rewarded feeder were also slower to reversal learn. Second, to our knowledge for the first time in a natural population, we examined how sampling of non-rewarding options post-learning affected reversal-learning performance. Sampling quantity was moderately repeatable in blue tits but not great tits; sampling bias, the variance in the proportion of visits to each non-rewarded feeder, was not repeatable for either species. Sampling behaviour did not predict variation in reversal-learning speed to any significant extent. Finally, the repeatability of reversal learning was explained almost entirely by proactive interference for blue tits; in great tits, the effects of proactive interference and sampling bias on the repeatability of reversal learning were indistinguishable. Our results highlight the value of proactive interference as a more direct measurement of cognitive flexibility and shed light on how animals respond to changes in their environment.


Subject(s)
Passeriformes , Reversal Learning , Animals , Cognition , Discrimination Learning , Individuality
8.
J Anim Ecol ; 91(2): 320-333, 2022 02.
Article in English | MEDLINE | ID: mdl-34693529

ABSTRACT

Organisms are constantly under selection to respond effectively to diverse, sometimes rapid, changes in their environment, but not all individuals are equally plastic in their behaviour. Although cognitive processes and personality are expected to influence individual behavioural plasticity, the effects reported are highly inconsistent, which we hypothesise is because ecological context is usually not considered. We explored how one type of behavioural plasticity, foraging flexibility, was associated with inhibitory control (assayed using a detour-reaching task) and exploration behaviour in a novel environment (a trait closely linked to the fast-slow personality axis). We investigated how these effects varied across two experimentally manipulated ecological contexts-food value and predation risk. In the first phase of the experiment, we trained great tits Parus major to retrieve high value (preferred) food that was hidden in sand so that this became the familiar food source. In the second phase, we offered them the same familiar hidden food at the same time as a new alternative option that was visible on the surface, which was either high or low value, and under either high or low perceived predation risk. Foraging flexibility was defined as the proportion of choices made during 4-min trials that were for the new alternative food source. Our assays captured consistent differences among individuals in foraging flexibility. Inhibitory control was associated with foraging flexibility-birds with high inhibitory control were more flexible when the alternative food was of high value, suggesting they inhibited the urge to select the familiar food and instead selected the new food option. Exploration behaviour also predicted flexibility-fast explorers were more flexible, supporting the information-gathering hypothesis. This tendency was especially strong under high predation risk, suggesting risk aversion also influenced the observed flexibility because fast explorers are risk prone and the new unfamiliar food was perceived to be the risky option. Thus, both behaviours predicted flexibility, and these links were at least partly dependent on ecological conditions. Our results demonstrate that an executive cognitive function (inhibitory control) and a behavioural assay of a well-known personality axis are both associated with individual variation in the plasticity of a key functional behaviour. That their effects on foraging flexibility were primarily observed as interactions with food value or predation risk treatments also suggest that the population-level consequences of some behavioural mechanisms may only be revealed across key ecological conditions.


Subject(s)
Passeriformes , Animals , Exploratory Behavior , Personality , Phenotype , Predatory Behavior
9.
J Comp Physiol B ; 192(1): 115-125, 2022 01.
Article in English | MEDLINE | ID: mdl-34401940

ABSTRACT

The ability to respond to competition is critical for social behaviors involved in mating, territoriality and foraging. Physiological mechanisms of competitive social behaviors may determine not only baseline behavior, but possibly also the plasticity of the response to competition. We examined the effects of the neuropeptide arginine vasotocin (AVT), which is implicated in social behavior in non-mammalian vertebrates, on both spontaneous acoustic advertisement calling behavior and the plastic response to a simulated competitive challenge in Cope's gray treefrogs, Hyla chrysoscelis. We injected males either with AVT or a saline control and then analyzed recordings of spontaneous calling prior to playback, playback of average advertisement calls, playback of highly competitive advertisement calls, and spontaneous calling after playback. We found a tendency for AVT-treated males to be more likely to resume calling, and AVT males had higher call rates than control males, although they did not differ in pulse number or call effort. There were no differences between the AVT and control treatments in the plasticity of calling behavior in response to simulated competitors. Our results generally align with other studies on how AVT affects anuran vocalizations, and suggest that its primary effect is on motivation to call, with less of an effect on plasticity in response to competition. Nevertheless, these effects on call motivation are significant, because mating success is often determined more by participation in the chorus than by the values of specific call characteristics.


Subject(s)
Vasotocin , Vocalization, Animal , Animals , Anura/physiology , Male , Motivation , Reproduction , Vasotocin/pharmacology , Vocalization, Animal/physiology
10.
J Anim Ecol ; 90(11): 2497-2509, 2021 11.
Article in English | MEDLINE | ID: mdl-34091901

ABSTRACT

The producer-scrounger game is a key element of foraging ecology in many systems. Producing and scrounging typically covary negatively, but partitioning this covariance into contributions of individual plasticity and consistent between individual differences is key to understanding population-level consequences of foraging strategies. Furthermore, little is known about the role cognition plays in the producer-scrounger game. We investigated the role of cognition in these alternative foraging tactics in wild mixed-species flocks of great tits and blue tits, using a production learning task in which we measured individuals' speed of learning to visit the single feeder in an array that would provide them with a food reward. We also quantified the proportion of individuals' feeds that were scrounges ('proportion scrounged'); scrounging was possible if individuals visited immediately after a previous rewarded visitor. Three learning experiments-initial and two reversal learning-enabled us to estimate the repeatability and covariance of each foraging behaviour. First, we examined whether individuals learned to improve their scrounging success (i.e. whether they obtained food by scrounging when there was an opportunity to do so). Second, we quantified the repeatability of proportion scrounged, and asked whether proportion scrounged affected production learning speed among individuals. Third, we used multivariate analyses to partition within- and among-individual components of covariance between proportion scrounged and production learning speed. Individuals improved their scrounging success over time. Birds with a greater proportion scrounged took longer to learn their own rewarding feeder. Although multivariate analyses showed that covariance between proportion scrounged and learning speed was driven primarily by within-individual variation, that is, by behavioural plasticity, among-individual differences also played a role for blue tits. This is the first demonstration of a cognitive trait influencing producing and scrounging in the same wild system, highlighting the importance of cognition in the use of alternative resource acquisition tactics. The results of our covariance analyses suggest the potential for genetic differences in allocation to alternative foraging tactics, which are likely species- and system-dependent. They also point to the need to control for different foraging tactics when studying individual cognition in the wild.


Subject(s)
Passeriformes , Songbirds , Animals , Cognition , Feeding Behavior , Learning
11.
Integr Comp Biol ; 61(3): 842-853, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34009312

ABSTRACT

Locomotion is a hallmark of organisms which has enabled adaptive radiation to an extraordinarily diverse class of ecological niches, and allows animals to move across vast distances. Sampling from multiple sensory modalities enables animals to acquire rich information to guide locomotion. Locomotion without sensory feedback is haphazard; therefore, sensory and motor systems have evolved complex interactions to generate adaptive behavior. Notably, sensory-guided locomotion acts over broad spatial and temporal scales to permit goal-seeking behavior, whether to localize food by tracking an attractive odor plume or to search for a potential mate. How does the brain integrate multimodal stimuli over different temporal and spatial scales to effectively control behavior? In this review, we classify locomotion into three ordinally ranked hierarchical layers that act over distinct spatiotemporal scales: stabilization, motor primitives, and higher-order tasks, respectively. We discuss how these layers present unique challenges and opportunities for sensorimotor integration. We focus on recent advances in invertebrate locomotion due to their accessible neural and mechanical signals from the whole brain, limbs, and sensors. Throughout, we emphasize neural-level description of computations for multimodal integration in genetic model systems, including the fruit fly, Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti. We identify that summation (e.g., gating) and weighting-which are inherent computations of spiking neurons-underlie multimodal integration across spatial and temporal scales, therefore suggesting collective strategies to guide locomotion.


Subject(s)
Aedes , Drosophila melanogaster , Locomotion , Nervous System Physiological Phenomena , Aedes/physiology , Animals , Drosophila melanogaster/physiology , Neurons , Spatio-Temporal Analysis
12.
Integr Comp Biol ; 61(3): 814-824, 2021 10 04.
Article in English | MEDLINE | ID: mdl-33744960

ABSTRACT

Communication is a social process and usually occurs in a network of signalers and receivers. While social network analysis has received enormous recent attention from animal behaviorists, there have been relatively few attempts to apply these techniques to communication networks. Communication networks have the potential to offer novel insights into social network studies, and yet are especially challenging subjects, largely because of their unique spatiotemporal characteristics. Namely, signals propagate through the environment, often dissociating from the body of the signaler, to influence receiver behavior. The speed of signal propagation and the signal's active space will affect the congruence of communication networks and other types of social network; in extreme cases, the signal may persist and only first be detected long after the signaler has left the area. Other signals move more rapidly and over greater distances than the signaler could possibly move to reach receivers. We discuss the spatial and temporal consequences of signaling in networks and highlight the distinction between the physical location of the signaler and the spread of influence of its signals, the effects of signal modality and receiver sensitivity on communication network properties, the potential for feedbacks between network layers, and approaches to analyzing spatial and temporal change in communication networks in conjunction with other network layers.


Subject(s)
Animal Communication , Animals , Spatio-Temporal Analysis
13.
Proc Biol Sci ; 288(1945): 20210005, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33593184

ABSTRACT

Speed-accuracy trade-offs-being fast at the risk of being wrong-are fundamental to many decisions and natural selection is expected to resolve these trade-offs according to the costs and benefits of behaviour. We here test the prediction that females and males should integrate information from courtship signals differently because they experience different pay-offs along the speed-accuracy continuum. We fitted a neural model of decision making (a drift-diffusion model of integration to threshold) to behavioural data from the grasshopper Chorthippus biguttulus to determine the parameters of temporal integration of acoustic directional information used by male grasshoppers to locate receptive females. The model revealed that males had a low threshold for initiating a turning response, yet a large integration time constant enabled them to continue to gather information when cues were weak. This contrasts with parameters estimated for females of the same species when evaluating potential mates, in which response thresholds were much higher and behaviour was strongly influenced by unattractive stimuli. Our results reveal differences in neural integration consistent with the sex-specific costs of mate search: males often face competition and need to be fast, while females often pay high error costs and need to be deliberate.


Subject(s)
Grasshoppers , Acoustics , Animals , Courtship , Cues , Female , Male , Selection, Genetic
14.
J Anim Ecol ; 90(4): 989-1003, 2021 04.
Article in English | MEDLINE | ID: mdl-33481278

ABSTRACT

Natal body mass is a key predictor of viability and fitness in many animals. While variation in body mass and therefore juvenile viability may be explained by genetic and environmental factors, emerging evidence points to the gut microbiota as an important factor influencing host health. The gut microbiota is known to change during development, but it remains unclear whether the microbiome predicts fitness, and if it does, at which developmental stage it affects fitness traits. We collected data on two traits associated with fitness in wild nestling great tits Parus major: weight and survival to fledging. We characterised the gut microbiome using 16S rRNA sequencing from nestling faeces and investigated temporal associations between the gut microbiome and fitness traits across development at Day-8 (D8) and Day-15 (D15) post-hatching. We also explored whether particular microbial taxa were 'indicator species' that reflected whether nestlings survived or not. There was no link between mass and microbial diversity on D8 or D15. However, we detected a time-lagged relationship where weight at D15 was negatively associated with the microbial diversity at D8, controlling for weight at D8, therefore reflecting relative weight gain over the intervening period. Indicator species analysis revealed that specificity values were high and fidelity values were low, suggesting that indicator taxa were primarily detected within either the survived or not survived groups, but not always detected in birds that either survived or died. Therefore these indicator taxa may be sufficient, but not necessary for determining either survival or mortality, perhaps owing to functional overlap in microbiota. We highlight that measuring microbiome-fitness relationships at just one time point may be misleading, especially early in life. Instead, microbial-host fitness effects may be best investigated longitudinally to detect critical development windows for key microbiota and host traits associated with neonatal weight. Our findings should inform future hypothesis testing to pinpoint which features of the gut microbial community impact on host fitness, and when during development this occurs. Such confirmatory research will shed light on population level processes and could have the potential to support conservation.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Passeriformes , Animals , Body Weight , RNA, Ribosomal, 16S/genetics
15.
Sci Rep ; 10(1): 20783, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33247162

ABSTRACT

The microbial community in the gut is influenced by environmental factors, especially diet, which can moderate host behaviour through the microbiome-gut-brain axis. However, the ecological relevance of microbiome-mediated behavioural plasticity in wild animals is unknown. We presented wild-caught great tits (Parus major) with a problem-solving task and showed that performance was weakly associated with variation in the gut microbiome. We then manipulated the gut microbiome by feeding birds one of two diets that differed in their relative levels of fat, protein and fibre content: an insect diet (low content), or a seed diet (high content). Microbial communities were less diverse among individuals given the insect compared to those on the seed diet. Individuals were less likely to problem-solve after being given the insect diet, and the same microbiota metrics that were altered as a consequence of diet were also those that correlated with variation in problem solving performance. Although the effect on problem-solving behaviour could have been caused by motivational or nutritional differences between our treatments, our results nevertheless raise the possibility that dietary induced changes in the gut microbiota could be an important mechanism underlying individual behavioural plasticity in wild populations.


Subject(s)
Behavior, Animal/physiology , Diet , Gastrointestinal Microbiome , Passeriformes/microbiology , Passeriformes/physiology , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Animals, Wild/microbiology , Animals, Wild/physiology , Animals, Wild/psychology , Biodiversity , Ecosystem , Female , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Ireland , Male , Problem Solving/physiology , RNA, Ribosomal, 16S/genetics
16.
Wiley Interdiscip Rev Cogn Sci ; 11(5): e1538, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32548958

ABSTRACT

The multifaceted ability to produce, transmit, receive, and respond to acoustic signals is widespread in animals and forms the basis of the interdisciplinary science of bioacoustics. Bioacoustics research methods, including sound recording and playback experiments, are applicable in cognitive research that centers around the processing of information from the acoustic environment. We provide an overview of bioacoustics techniques in the context of cognitive studies and make the case for the importance of bioacoustics in the study of cognition by outlining some of the major cognitive processes in which acoustic signals are involved. We also describe key considerations associated with the recording of sound and its use in cognitive applications. Based on these considerations, we provide a set of recommendations for best practices in the recording and use of acoustic signals in cognitive studies. Our aim is to demonstrate that acoustic recordings and stimuli are valuable tools for cognitive researchers when used appropriately. In doing so, we hope to stimulate opportunities for innovative cognitive research that incorporates robust recording protocols. This article is categorized under: Neuroscience > Cognition Psychology > Theory and Methods Neuroscience > Behavior Neuroscience > Cognition.


Subject(s)
Biomedical Research , Cognitive Neuroscience , Psychoacoustics , Biomedical Research/instrumentation , Biomedical Research/methods , Biomedical Research/standards , Cognitive Neuroscience/instrumentation , Cognitive Neuroscience/methods , Cognitive Neuroscience/standards , Humans
17.
R Soc Open Sci ; 7(4): 192107, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32431886

ABSTRACT

Cognition arguably drives most behaviours in animals, but whether and why individuals in the wild vary consistently in their cognitive performance is scarcely known, especially under mixed-species scenarios. One reason for this is that quantifying the relative importance of individual, contextual, ecological and social factors remains a major challenge. We examined how many of these factors, and sources of bias, affected participation and performance, in an initial discrimination learning experiment and two reversal learning experiments during self-administered trials in a population of great tits and blue tits. Individuals were randomly allocated to different rewarding feeders within an array. Participation was high and only weakly affected by age and species. In the initial learning experiment, great tits learned faster than blue tits. Great tits also showed greater consistency in performance across two reversal learning experiments. Individuals assigned to the feeders on the edge of the array learned faster. More errors were made on feeders neighbouring the rewarded feeder and on feeders that had been rewarded in the previous experiment. Our estimates of learning consistency were unaffected by multiple factors, suggesting that, even though there was some influence of these factors on performance, we obtained a robust measure of discrimination learning in the wild.

18.
J Exp Biol ; 222(Pt 23)2019 12 05.
Article in English | MEDLINE | ID: mdl-31753909

ABSTRACT

Sound localization is fundamental to hearing. In nature, sound degradation and noise erode directional cues and can generate conflicting directional perceptions across different subcomponents of sounds. Little is known about how sound localization is achieved in the face of conflicting directional cues in non-human animals, although this is relevant for many species in which sound localization in noisy conditions mediates mate finding or predator avoidance. We studied the effects of conflicting directional cues in male grasshoppers, Chorthippus biguttulus, which orient towards signaling females. We presented playbacks varying in the number and temporal position of song syllables providing directional cues in the form of either time or amplitude differences between two speakers. Males oriented towards the speaker broadcasting a greater number of leading or louder syllables. For a given number of syllables providing directional information, syllables with timing differences at the beginning of the song were weighted most heavily, while syllables with intensity differences were weighted most heavily when they were in the middle of the song. When timing and intensity cues conflicted, the magnitude and temporal position of each cue determined their relative influence on lateralization, and males sometimes quickly corrected their directional responses. We discuss our findings with respect to similar results from humans.


Subject(s)
Cues , Grasshoppers/physiology , Hearing/physiology , Sound Localization/physiology , Acoustic Stimulation , Animals , Male
19.
Ecol Evol ; 8(6): 3410-3429, 2018 03.
Article in English | MEDLINE | ID: mdl-29607035

ABSTRACT

Animal signals are inherently complex phenotypes with many interacting parts combining to elicit responses from receivers. The pattern of interrelationships between signal components reflects the extent to which each component is expressed, and responds to selection, either in concert with or independently of others. Furthermore, many species have complex repertoires consisting of multiple signal types used in different contexts, and common morphological and physiological constraints may result in interrelationships extending across the multiple signals in species' repertoires. The evolutionary significance of interrelationships between signal traits can be explored within the framework of phenotypic integration, which offers a suite of quantitative techniques to characterize complex phenotypes. In particular, these techniques allow for the assessment of modularity and integration, which describe, respectively, the extent to which sets of traits covary either independently or jointly. Although signal and repertoire complexity are thought to be major drivers of diversification and social evolution, few studies have explicitly measured the phenotypic integration of signals to investigate the evolution of diverse communication systems. We applied methods from phenotypic integration studies to quantify integration in the two primary vocalization types (advertisement and aggressive calls) in the treefrogs Hyla versicolor, Hyla cinerea, and Dendropsophus ebraccatus. We recorded male calls and calculated standardized phenotypic variance-covariance (P) matrices for characteristics within and across call types. We found significant integration across call types, but the strength of integration varied by species and corresponded with the acoustic similarity of the call types within each species. H. versicolor had the most modular advertisement and aggressive calls and the least acoustically similar call types. Additionally, P was robust to changing social competition levels in H. versicolor. Our findings suggest new directions in animal communication research in which the complex relationships among the traits of multiple signals are a key consideration for understanding signal evolution.

20.
R Soc Open Sci ; 5(2): 172218, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29515906

ABSTRACT

Personality research suggests that individual differences in risk aversion may be explained by links with life-history variation. However, few empirical studies examine whether repeatable differences in risk avoidance behaviour covary with life-history traits among individuals in natural populations, or how these links vary depending on the context and the way risk aversion is measured. We measured two different risk avoidance behaviours (latency to enter the nest and inspection time) in wild great tits (Parus major) in two different contexts-response to a novel object and to a predator cue placed at the nest-box during incubation---and related these behaviours to female reproductive success and condition. Females responded equally strongly to both stimuli, and although both behaviours were repeatable, they did not correlate. Latency to enter was negatively related to body condition and the number of offspring fledged. By contrast, inspection time was directly explained by whether incubating females had been flushed from the nest before the trial began. Thus, our inferences on the relationship between risk aversion and fitness depend on how risk aversion was measured. Our results highlight the limitations of drawing conclusions about the relevance of single measures of a personality trait such as risk aversion.

SELECTION OF CITATIONS
SEARCH DETAIL
...