Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 104(3): 2668-2683, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33455773

ABSTRACT

Pseudomonas spp. are important spoilage bacteria that negatively affect the quality of refrigerated fluid milk and uncultured cheese by generating unwanted odors, flavors, and pigments. They are frequently found in dairy plant environments and enter dairy products predominantly as postpasteurization contaminants. Current subtyping and characterization methods for dairy-associated Pseudomonas are often labor-intensive and expensive or provide limited and possibly unreliable classification information (e.g., to the species level). Our goal was to identify a single-copy gene that could be analyzed in dairy spoilage-associated Pseudomonas for preliminary species-level identification, subtyping, and phenotype prediction. We tested 7 genes previously targeted in a Pseudomonas fluorescens multilocus sequence typing scheme for their individual suitability in this application using a set of 113 Pseudomonas spp. isolates representing the diversity of typical pasteurized milk contamination. For each of the 7 candidate genes, we determined the success rate of PCR and sequencing for these 113 isolates as well as the level of discrimination for species identification and subtyping that the sequence data provided. Using these metrics, we selected a single gene, isoleucyl tRNA synthetase (ileS), which had the most suitable traits for simple and affordable single-gene Pseudomonas characterization. This was based on the number of isolates successfully sequenced for ileS (113/113), the number of unique allelic types assigned (83, compared with 50 for 16S rDNA), nucleotide and sequence diversity measures (e.g., number of unique SNP and Simpson index), and tests for genetic recombination. The discriminatory ability of ileS sequencing was confirmed by separation of 99 additional dairy Pseudomonas spp. isolates, which were indistinguishable by 16S rDNA sequencing, into 28 different ileS allelic types. Further, we used whole-genome sequencing data to demonstrate the similarities in ileS-based phylogenetic clustering to whole-genome-based clustering for 27 closely related dairy-associated Pseudomonas spp. isolates and for 178 Pseudomonas type strains. We also found that dairy-associated Pseudomonas within an ileS cluster typically shared the same proteolytic and lipolytic activities. Use of ileS sequencing provides a promising strategy for affordable initial characterization of Pseudomonas isolates, which will help the dairy industry identify, characterize, and track Pseudomonas in their facilities and products.


Subject(s)
Food Contamination , Isoleucine-tRNA Ligase , Milk/microbiology , Pseudomonas , Animals , Dairying , Phylogeny , Pseudomonas/genetics
2.
J Dairy Sci ; 103(8): 7569-7584, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32475674

ABSTRACT

Postpasteurization contamination (PPC) with gram-negative bacteria adversely affects the quality and shelf-life of milk through the development of flavor, odor, texture, and visual defects. Through evaluation of milk quality at 4 large fluid milk processing facilities in the northeast United States, we examined the efficacy of 3 strategies designed to reduce the occurrence of PPC in fluid milk: (1) employee training (focusing on good manufacturing practices) alone and (2) with concurrent implementation of modified clean-in-place chemistry and (3) preventive maintenance (PM) focused on replacement of wearable rubber components. Despite increases in employee knowledge and self-reported behavior change, microbiological evaluation of fluid milk before and after interventions indicated that neither training alone nor training combined with modified clean-in-place interventions significantly decreased PPC. Furthermore, characterization of gram-negative bacterial isolates from milk suggested that specific bacterial taxonomic groups (notably, Pseudomonas sequence types) continued to contribute to PPC even after interventions and that no major changes in the composition of the spoilage-associated microbial populations occurred as a consequence of the interventions. More specifically, in 3 of 4 facilities, gram-negative bacteria with identical 16S rDNA sequence types were isolated on multiple occasions. Evaluation of a PM intervention showed that used rubber goods harbored PPC-associated bacteria and that PPC may have been less frequent following a PM intervention in which wearable rubber goods were replaced (reduction from 3/3 samples with PPC before to 1/3 samples after). Overall, our findings suggest that commonly used "broad stroke interventions" may have a limited effect on reducing PPC. Our case study also demonstrates the inherent complexities of identifying and successfully addressing sanitation problems in large and complex fluid milk processing facilities. For example, broad changes to sanitation practices without improvements in PM and sanitary equipment design may not always lead to reduced PPC. Our data also indicate that although short-term evaluations, such as pre- and post-tests for employee training, may suggest improvements after corrective and preventive actions, extensive microbial testing, ideally in combination with isolate characterization, may be necessary to evaluate return on investment of different interventions.


Subject(s)
Cattle , Dairying/education , Food Contamination/prevention & control , Milk/standards , Animals , Bacteria/genetics , Bacteria/isolation & purification , DNA, Ribosomal/analysis , Female , Food Contamination/analysis , Hot Temperature , Hygiene , Maintenance , Milk/chemistry , Milk/microbiology , New England , Pasteurization , Pseudomonas/isolation & purification , Taste
3.
J Dairy Sci ; 101(9): 7780-7800, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29960782

ABSTRACT

Postpasteurization contamination (PPC) of high temperature, short time-pasteurized fluid milk by gram-negative (GN) bacteria continues to be an issue for processors. To improve PPC control, a better understanding of PPC patterns in dairy processing facilities over time and across equipment is needed. We thus collected samples from 10 fluid milk processing facilities to (1) detect and characterize PPC patterns over time, (2) determine the efficacy of different media to detect PPC, and (3) characterize sensory defects associated with PPC. Specifically, we collected 280 samples of high temperature, short time-pasteurized milk representing different products (2%, skim, and chocolate) and different fillers over 4 samplings performed over 11 mo at each of the 10 facilities. Standard plate count (SPC) as well as total GN, coliform, and Enterobacteriaceae (EB) counts were performed upon receipt and after 7, 10, 14, 17, and 21 d of storage at 6°C. We used 16S rDNA sequencing to characterize representative bacterial isolates from (1) test days with SPC >20,000 cfu/mL and (2) all samples with presumptive GN, coliforms, or EB. Day-21 samples were also evaluated by a trained defect judging panel. By d 21, 226 samples had SPC >20,000 cfu/mL on at least 1 d of shelf life; GN bacteria were found in 132 of these 226 samples, indicating PPC. Crystal violet tetrazolium agar detected PPC with the greatest sensitivity. Spoilage due to PPC was predominantly associated with Pseudomonas (isolated from 101 of the 132 samples with PPC); coliforms and EB were found in 27 and 37 samples with spoilage due to PPC, respectively. Detection of Pseudomonas and Acinetobacter was associated with lower flavor scores; coagulated, fruity fermented, and unclean defects were more prevalent in d-21 samples with PPC. Repeat isolation of Pseudomonas fluorescens group strains with identical partial 16S rDNA sequence types was observed in 8 facilities. In several facilities, specific lines, products, or processing days were linked to repeat product contamination with Pseudomonas with identical sequence types. Our data show that PPC due to Pseudomonas remains a major challenge for fluid milk processors; the inability of coliform and EB tests to detect Pseudomonas may contribute to this. Our data also provide important initial insights into PPC patterns (e.g., line-specific contamination), supporting the importance of molecular subtyping methods for identification of PPC sources.


Subject(s)
Food Contamination/analysis , Food Preservation , Milk/microbiology , Pseudomonas fluorescens/isolation & purification , Animals , Colony Count, Microbial , Enterobacteriaceae , Food Microbiology , Pseudomonas , Taste
4.
J Biol Chem ; 276(25): 22901-9, 2001 Jun 22.
Article in English | MEDLINE | ID: mdl-11264287

ABSTRACT

The initial step of the plastidic 2C-methyl-D-erythritol 4-phosphate (MEP) pathway that produces isopentenyl diphosphate is catalyzed by 1-deoxy-d-xylulose-5-phosphate synthase. To investigate whether or not 1-deoxy-d-xylulose-5-phosphate synthase catalyzes a limiting step in the MEP pathway in plants, we produced transgenic Arabidopsis plants that over- or underexpress this enzyme. Compared with non-transgenic wild-type plants, the transgenic plants accumulate different levels of various isoprenoids such as chlorophylls, tocopherols, carotenoids, abscisic acid, and gibberellins. Phenotypically, the transgenic plants had slight alterations in growth and germination rates. Because the levels of several plastidic isoprenoids correlate with changes in 1-deoxy-D-xylulose-5-phosphate synthase levels, we conclude that this enzyme catalyzes one of the rate-limiting steps of the MEP biosynthetic pathway. Furthermore, since the product of the MEP pathway is isopentenyl diphosphate, our results suggest that in plastids the pool of isopentenyl diphosphate is limiting to isprenoid production.


Subject(s)
Arabidopsis/metabolism , Carotenoids/biosynthesis , Chlorophyll/biosynthesis , Plastids/metabolism , Transferases/metabolism , Vitamin E/biosynthesis , Abscisic Acid/metabolism , Arabidopsis/enzymology , Base Sequence , DNA Primers , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/metabolism
5.
Plant Physiol ; 125(1): 339-50, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11154341

ABSTRACT

The abundance of plant nucleolin mRNA is regulated during de-etiolation by phytochrome. A close correlation between the mRNA abundance of nucleolin and mitosis has also been previously reported. These results raised the question of whether the effects of light on nucleolin mRNA expression were a consequence of light effects on mitosis. To test this we compared the kinetics of light-mediated increases in cell proliferation with that of light-mediated changes in the abundance of nucleolin mRNA using plumules of dark-grown pea (Pisum sativum) seedlings. These experiments show that S-phase increases 9 h after a red light pulse, followed by M-phase increases in the plumule leaves at 12 h post-irradiation, a time course consistent with separately measured kinetics of red light-induced increases in the expression of cell cycle-regulated genes. These increases in cell cycle-regulated genes are photoreversible, implying that the light-induced increases in cell proliferation are, like nucleolin mRNA expression, regulated via phytochrome. Red light stimulates increases in the mRNA for nucleolin at 6 h post-irradiation, prior to any cell proliferation changes and concurrent with the reported timing of phytochrome-mediated increases of rRNA abundance. After a green light pulse, nucleolin mRNA levels increase without increasing S-phase or M-phase. Studies in animals and yeast indicate that nucleolin plays a significant role in ribosome biosynthesis. Consistent with this function, pea nucleolin can rescue nucleolin deletion mutants of yeast that are defective in rRNA synthesis. Our data show that during de-etiolation, the increased expression of nucleolin mRNA is more directly regulated by light than by mitosis.


Subject(s)
Cell Cycle/radiation effects , Cell Division/radiation effects , Gene Expression Regulation, Plant , Light , Phosphoproteins/genetics , Pisum sativum/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Darkness , Gene Expression Regulation, Plant/radiation effects , Kinetics , Mitosis/radiation effects , Pisum sativum/cytology , Pisum sativum/radiation effects , S Phase/radiation effects , Nucleolin
6.
Plant Physiol ; 114(2): 643-52, 1997 Jun.
Article in English | MEDLINE | ID: mdl-9193096

ABSTRACT

A cDNA encoding a nucleolar protein was selected from a pea (Pisum sativum) plumule library, cloned, and sequenced. The translated sequence of the cDNA has significant percent identity to Xenopus laevis nucleolin (31%), the alfalfa (Medicago sativa) nucleolin homolog (66%), and the yeast (Saccharomyces cerevisiae) nucleolin homolog (NSR1) (28%). It also has sequence patterns in its primary structure that are characteristic of all nucleolins, including an N-terminal acidic motif, RNA recognition motifs, and a C-terminal Gly- and Arg-rich domain. By immunoblot analysis, the polyclonal antibodies used to select the cDNA bind selectively to a 90-kD protein in purified pea nuclei and nucleoli and to an 88-kD protein in extracts of Escherichia coli expressing the cDNA. In immunolocalization assays of pea plumule cells, the antibodies stained primarily a region surrounding the fibrillar center of nucleoli, where animal nucleolins are typically found. Southern analysis indicated that the pea nucleolin-like protein is encoded by a single gene, and northern analysis showed that the labeled cDNA binds to a single band of RNA, approximately the same size and the cDNA. After irradiation of etiolated pea seedlings by red light, the mRNA level in plumules decreased during the 1st hour and then increased to a peak of six times the 0-h level at 12 h. Far-red light reversed this effect of red light, and the mRNA accumulation from red/far-red light irradiation was equal to that found in the dark control. This indicates that phytochrome may regulate the expression of this gene.


Subject(s)
Cell Nucleolus/metabolism , Gene Expression Regulation, Plant , Nuclear Proteins/genetics , Phosphoproteins/genetics , Pisum sativum/genetics , Pisum sativum/radiation effects , RNA-Binding Proteins , Amino Acid Sequence , Base Sequence , Cell Nucleolus/chemistry , Cloning, Molecular , DNA, Complementary/genetics , Escherichia coli/genetics , Gene Dosage , Immunohistochemistry , Light , Molecular Sequence Data , Nuclear Proteins/isolation & purification , Phosphoproteins/isolation & purification , RNA, Messenger/biosynthesis , RNA, Plant/biosynthesis , Recombinant Proteins/isolation & purification , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Nucleolin
SELECTION OF CITATIONS
SEARCH DETAIL
...