Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci Methods ; 388: 109810, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36738847

ABSTRACT

BACKGROUND: Functional near-infrared spectroscopy (fNIRS) as a non-invasive optical neuroimaging technique has demonstrated great potential in monitoring cerebral activity. Due to its portability and compatibility with medical implants, fNIRS has seen increasing applications in studying the hearing, language and cognitive functions. However, fNIRS is susceptible to artifacts related to jaw movements, such as teeth clenching, swallowing and speaking, which affect recordings over the temporal, parietal and frontal/prefrontal cortices. NEW METHOD: We investigated two new approaches to control the jaw-related motion artifacts, an individually customized bite bar apparatus and a denoising algorithm namely PCA-GLM based on multi-channel fNIRS recordings from long-separation and short-separation montage. We first recorded data while subjects performed a clenching task, then an auditory task and a resting-state task with and without the bite bar. RESULTS: Our results have shown that jaw clenching can introduce spurious, task-evoked-like responses in fNIRS signals. A bite bar customized for each participant effectively suppressed the movement-related activities in fNIRS, at both task and resting-state conditions. Moreover, the bite bar and the PCA-GLM denoising method are shown to improve auditory responses, by significantly reducing the within-subject standard deviation, increasing the task-related contrast-to-noise ratio, and yielding stronger activations to the auditory stimuli. COMPARISON WITH EXISTING METHOD(S): The current study has demonstrated a novel method to control the jaw-related motion artifacts in fNIRS signals. CONCLUSIONS: Our method will benefit the study of the hearing, language and cognitive functions in normal healthy subjects and patients.


Subject(s)
Artifacts , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Neuroimaging/methods , Language , Motion
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4649-4652, 2022 07.
Article in English | MEDLINE | ID: mdl-36086024

ABSTRACT

Functional near-infrared spectroscopy (fNIRS), a non-invasive optical neuroimaging technique, has demonstrated its great potential in monitoring cerebral activity as an alternative to functional magnetic resonance imaging (fMRI) in research and clinical usage. fNIRS has seen increasing applications in studying the auditory cortex in healthy subjects and cochlear implant users. However, fNIRS is susceptible to motion artifacts, especially those related to jaw movement, which can affect fNIRS signals in speech and auditory tasks. This study aimed to investigate the motion artifacts related to jaw movements including clenching, speaking, swallowing, and sniffing in a group of human subjects, and test whether our previously established denoising algorithm namely PCA-GLM can reduce the motion artifacts. Our results have shown that the jaw movements introduced artifacts that resemble task-evoked activations and that the PCA-GLM method effectively reduced the motion artifacts due to the clenching movements. The preliminary results of the present study underline the importance of the removal of the jaw-movement-related artifacts in fNIRS signals and suggest the efficacy of our PCA-GLM method in reducing the motion artifacts. Clinical Relevance- This work studies the motion artifacts due to jaw movements that frequently occur in speech perception and production tasks and validates the efficacy of an established denoising algorithm which benefits fNIRS studies on auditory and language functions.


Subject(s)
Auditory Cortex , Cochlear Implants , Artifacts , Auditory Cortex/diagnostic imaging , Humans , Motion , Spectroscopy, Near-Infrared/methods
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 948-951, 2020 07.
Article in English | MEDLINE | ID: mdl-33018141

ABSTRACT

Functional near-infrared spectroscopy (fNIRS) has the potential to become the next common noninvasive neuroimaging technique for routine clinical use. Compared to the current standard for neuroimaging, functional magnetic resonance imaging (fMRI), fNIRS boasts several advantages which increase its likelihood for clinical adoption. However, fNIRS suffers from an intrinsic interference from the superficial tissues, which the near-infrared light must penetrate before reaching the deeper cerebral cortex. Therefore, the removal of signals captured by SS channels has been proposed to attenuate the systematic interference. This study aimed to investigate the task-related systemic artefacts, in a high-density montage covering the sensorimotor cortex. We compared the association between LS and SS channels over the contralateral motor cortex which was activated by a hand clenching task, with that over the ipsilateral cortex where no task-related activation was expected. Our findings provide important guidelines regarding how to removal SS signals in a high-density whole-head montage.


Subject(s)
Motor Cortex , Spectroscopy, Near-Infrared , Artifacts , Magnetic Resonance Imaging , Neuroimaging
SELECTION OF CITATIONS
SEARCH DETAIL
...