Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38793524

ABSTRACT

This study introduces an advanced computational method aimed at accelerating continuum-scale processes using crystal plasticity approaches to predict mechanical responses in cobalt-based superalloys. The framework integrates two levels, namely, sub-grain and homogenized, at the meso-scale through crystal plasticity finite element (CPFE) platforms. The model is applicable across a temperature range from room temperature up to 900 °C, accommodating various dislocation mechanisms in the microstructure. The sub-grain level explicitly incorporates precipitates and employs a dislocation density-based constitutive model that is size-dependent. In contrast, the homogenized level utilizes an activation energy-based constitutive model, implicitly representing the γ' phase for efficiency in computations. This level considers the effects of composition and morphology on mechanical properties, demonstrating the potential for cobalt-based superalloys to rival nickel-based superalloys. The study aims to investigate the impacts of elements including tungsten, tantalum, titanium, and chromium through the homogenized constitutive model. The model accounts for the locking mechanism to address the cross-slip of screw dislocations at lower temperatures as well as the glide and climb mechanism to simulate diffusions at higher temperatures. The model's validity is established across diverse compositions and morphologies, as well as various temperatures, through comparison with experimental data. This advanced computational framework not only enables accurate predictions of mechanical responses in cobalt-based superalloys across a wide temperature range, but also provides valuable insights into the design and optimization of these materials for high-temperature applications.

2.
Materials (Basel) ; 15(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35806572

ABSTRACT

The current study focuses on the modeling of two-phase γ-γ' nickel-based superalloys, utilizing multi-scale approaches to simulate and predict the creep behaviors through crystal plasticity finite element (CPFE) platforms. The multi-scale framework links two distinct levels of the spatial spectrum, namely, sub-grain and homogenized scales, capturing the complexity of the system responses as a function of a tractable set of geometric and physical parameters. The model considers two dominant features of γ' morphology and composition. The γ' morphology is simulated using three parameters describing the average size, volume fraction, and shape. The sub-grain level is expressed by a size-dependent, dislocation density-based constitutive model in the CPFE framework with the explicit depiction of γ-γ' morphology as the building block of the homogenized scale. The homogenized scale is developed as an activation energy-based crystal plasticity model reflecting intrinsic composition and morphology effects. The model incorporates the functional configuration of the constitutive parameters characterized over the sub-grain γ-γ' microstructural morphology. The developed homogenized model significantly expedites the computational processes due to the nature of the parameterized representation of the dominant factors while retains reliable accuracy. Anti-Phase Boundary (APB) shearing and, glide-climb dislocation mechanisms are incorporated in the constitutive model which will become active based on the energies associated with the dislocations. The homogenized constitutive model addresses the thermo-mechanical behavior of nickel-based superalloys for an extensive temperature domain and encompasses orientation dependence as well as the loading condition of tension-compression asymmetry aspects. The model is validated for diverse compositions, temperatures, and orientations based on previously reported data of single crystalline nickel-based superalloy.

3.
Sci Rep ; 10(1): 8262, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32427971

ABSTRACT

The density and configurational changes of crystal dislocations during plastic deformation influence the mechanical properties of materials. These influences have become clearest in nanoscale experiments, in terms of strength, hardness and work hardening size effects in small volumes. The mechanical characterization of a model crystal may be cast as an inverse problem of deducing the defect population characteristics (density, correlations) in small volumes from the mechanical behavior. In this work, we demonstrate how a deep residual network can be used to deduce the dislocation characteristics of a sample of interest using only its surface strain profiles at small deformations, and then statistically predict the mechanical response of size-affected samples at larger deformations. As a testbed of our approach, we utilize high-throughput discrete dislocation simulations for systems of widths that range from nano- to micro- meters. We show that the proposed deep learning model significantly outperforms a traditional machine learning model, as well as accurately produces statistical predictions of the size effects in samples of various widths. By visualizing the filters in convolutional layers and saliency maps, we find that the proposed model is able to learn the significant features of sample strain profiles.

4.
Phys Rev E ; 99(5-1): 053003, 2019 May.
Article in English | MEDLINE | ID: mdl-31212541

ABSTRACT

Systems far from equilibrium respond to probes in a history-dependent manner. The prediction of the system response depends on either knowing the details of that history or being able to characterize all the current system properties. In crystal plasticity, various processing routes contribute to a history dependence that may manifest itself through complex microstructural deformation features with large strain gradients. However, the complete spatial strain correlations may provide further predictive information. In this paper, we demonstrate an explicit example where spatial strain correlations can be used in a statistical manner to infer and classify prior deformation history at various strain levels. The statistical inference is provided by machine-learning techniques. As source data, we consider uniaxially compressed crystalline thin films generated by two dimensional discrete dislocation plasticity simulations, after prior compression at various levels. Crystalline thin films at the nanoscale demonstrate yield-strength size effects with very noisy mechanical responses that produce a serious challenge to learning techniques. We discuss the influence of size effects and structural uncertainty to the ability of our approach to distinguish different plasticity regimes.

5.
Sci Data ; 5: 180082, 2018 May 08.
Article in English | MEDLINE | ID: mdl-29737975

ABSTRACT

We perform high-throughput density functional theory (DFT) calculations for optoelectronic properties (electronic bandgap and frequency dependent dielectric function) using the OptB88vdW functional (OPT) and the Tran-Blaha modified Becke Johnson potential (MBJ). This data is distributed publicly through JARVIS-DFT database. We used this data to evaluate the differences between these two formalisms and quantify their accuracy, comparing to experimental data whenever applicable. At present, we have 17,805 OPT and 7,358 MBJ bandgaps and dielectric functions. MBJ is found to predict better bandgaps and dielectric functions than OPT, so it can be used to improve the well-known bandgap problem of DFT in a relatively inexpensive way. The peak positions in dielectric functions obtained with OPT and MBJ are in comparable agreement with experiments. The data is available on our websites http://www.ctcms.nist.gov/~knc6/JVASP.html and https://jarvis.nist.gov.

6.
Crystals (Basel) ; 7(11)2017.
Article in English | MEDLINE | ID: mdl-33029385

ABSTRACT

This paper develops a framework to obtain the flow stress of nickel-based superalloys as a function of γ-γ' morphology. The yield strength is a major factor in the design of these alloys. This work provides additional effects of γ' morphology in the design scope that has been adopted for the model developed by authors. In general, the two-phase γ-γ' morphology in nickel-based superalloys can be divided into three variables including γ' shape, γ' volume fraction and γ' size in the sub-grain microstructure. In order tfo obtain the flow stress, non-Schmid crystal plasticity constitutive models at two length scales are employed and bridged through a homogenized multi-scale framework. The multi-scale framework includes two sub-grain and homogenized grain scales. For the sub-grain scale, a size-dependent, dislocation-density-based finite element model (FEM) of the representative volume element (RVE) with explicit depiction of the γ-γ' morphology is developed as a building block for the homogenization. For the next scale, an activation-energy-based crystal plasticity model is developed for the homogenized single crystal of Ni-based superalloys. The constitutive models address the thermo-mechanical behavior of nickel-based superalloys for a large temperature range and include orientation dependencies and tension-compression asymmetry. This homogenized model is used to obtain the morphology dependence on the flow stress in nickel-based superalloys and can significantly expedite crystal plasticity FE simulations in polycrystalline microstructures, as well as higher scale FE models in order to cast and design superalloys.

SELECTION OF CITATIONS
SEARCH DETAIL
...