Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 25(20): 24615-24622, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-29041406

ABSTRACT

In order to demonstrate cavity quantum electrodynamics using photonic crystal (PhC) cavities fabricated around self-assembled quantum dots (QDs), reliable spectral and spatial overlap between the cavity mode and the quantum dot is required. We present a method for using photoresist to optically fabricate heterostructure cavities in a PhC waveguide with a combined photolithography and micro-photoluminescence spectroscopy system. The system can identify single QDs with a spatial precision of ±25 nm, and we confirm the creation of high quality factor cavity modes deterministically placed with the same spatial precision. This method offers a promising route towards bright, on-chip single photon sources for quantum information applications.

2.
Nanoscale ; 9(30): 10647-10652, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28534900

ABSTRACT

Due to its unique layer-number dependent electronic band structure and strong excitonic features, atomically thin MoS2 is an ideal 2D system where intriguing photoexcited-carrier-induced phenomena can be detected in excitonic luminescence. We perform micro-photoluminescence (PL) measurements and observe that the PL peak redshifts nonlinearly in mono- and bi-layer MoS2 as the excitation power is increased. The excited carrier-induced optical bandgap shrinkage is found to be proportional to n4/3, where n is the optically-induced free carrier density. The large exponent value of 4/3 is explicitly distinguished from a typical value of 1/3 in various semiconductor quantum well systems. The peculiar n4/3 dependent optical bandgap redshift may be due to the interplay between bandgap renormalization and reduced exciton binding energy.

3.
ACS Nano ; 11(3): 3207-3212, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28231429

ABSTRACT

Despite having outstanding electrical properties, graphene is unsuitable for optical devices because of its zero band gap. Here, we report two-dimensional excitonic photoluminescence (PL) from graphene grown on a Cu(111) surface, which shows an unexpected and remarkably sharp strong emission near 3.16 eV (full width at half-maximum ≤3 meV) and multiple emissions around 3.18 eV. As temperature increases, these emissions blue shift, displaying the characteristic negative thermal coefficient of graphene. The observed PL originates from the significantly suppressed dispersion of excited electrons in graphene caused by hybridization of graphene π and Cu d orbitals of the first and second Cu layers at a shifted saddle point 0.525(M+K) of the Brillouin zone. This finding provides a pathway to engineering optoelectronic graphene devices, while maintaining the outstanding electrical properties of graphene.

4.
Sci Rep ; 6: 37167, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27849046

ABSTRACT

Semiconducting single-walled carbon nanotubes are one-dimensional materials with great prospects for applications such as optoelectronic and quantum information devices. Yet, their optical performance is hindered by low fluorescent yield. Highly mobile excitons interacting with quenching sites are attributed to be one of the main non-radiative decay mechanisms that shortens the exciton lifetime. In this paper we report on time-integrated photoluminescence measurements on individual polymer wrapped semiconducting carbon nanotubes. An ultra narrow linewidth we observed demonstrates intrinsic exciton dynamics. Furthermore, we identify a state filling effect in individual carbon nanotubes at cryogenic temperatures as previously observed in quantum dots. We propose that each of the CNTs is segmented into a chain of zero-dimensional states confined by a varying local potential along the CNT, determined by local environmental factors such as the amount of polymer wrapping. Spectral diffusion is also observed, which is consistent with the tunneling of excitons between these confined states.

5.
Nano Lett ; 16(11): 7137-7141, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27737546

ABSTRACT

Colloidal semiconductor nanoplatelets exhibit quantum size effects due to their thickness of only a few monolayers, together with strong optical band-edge transitions facilitated by large lateral extensions. In this article, we demonstrate room temperature strong coupling of the light and heavy hole exciton transitions of CdSe nanoplatelets with the photonic modes of an open planar microcavity. Vacuum Rabi splittings of 66 ± 1 meV and 58 ± 1 meV are observed for the heavy and light hole excitons, respectively, together with a polariton-mediated hybridization of both transitions. By measuring the concentration of platelets in the film, we compute the transition dipole moment of a nanoplatelet exciton to be µ = (575 ± 110) D. The large oscillator strength and fluorescence quantum yield of semiconductor nanoplatelets provide a perspective toward novel photonic devices by combining polaritonic and spinoptronic effects.

6.
Sci Rep ; 6: 25449, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27147195

ABSTRACT

We investigated the optical properties of Ge nanocrystals surrounded by Ge3N4. The broad emission ranging from infrared to blue is due to the dependence on the crystal size and preparation methods. Here, we report high resolution Photoluminescence (PL) attributed to emission from individual Ge nanocrystals (nc-Ge) spatially resolved using micro-photoluminescence and detailed using temperature and power-dependent photoluminescence studies. The measured peaks are shown to behave with excitonic characteristics and we argue that the spread of the nc-Ge peaks in the PL spectrum is due to different confinement energies arising from the variation in size of the nanocrystals.

7.
Nano Lett ; 15(7): 4472-6, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26046390

ABSTRACT

We investigate nontrivial surface effects on the optical properties of self-assembled crystalline GaN nanotubes grown on Si substrates. The excitonic emission is observed to redshift by ∼100 meV with respect to that of bulk GaN. We find that the conduction band edge is mainly dominated by surface atoms, and that a larger number of surface atoms for the tube is likely to increase the bandwidth, thus reducing the optical bandgap. The experimental findings can have important impacts in the understanding of the role of surfaces in nanostructured semiconductors with an enhanced surface/volume ratio.


Subject(s)
Gallium/chemistry , Nanotubes/chemistry , Luminescence , Models, Molecular , Nanotubes/ultrastructure , Semiconductors , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...