Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Math Biosci ; 316: 108243, 2019 10.
Article in English | MEDLINE | ID: mdl-31449893

ABSTRACT

When modeling a physical system using a Markov chain, it is often instructive to compute its probability distribution at statistical equilibrium, thereby gaining insight into the stationary, or long-term, behavior of the system. Computing such a distribution directly is problematic when the state space of the system is large. Here, we look at the case of a chemical reaction system that models the dynamics of cellular processes, where it has become popular to constrain the computational burden by using a finite state projection, which aims only to capture the most likely states of the system, rather than every possible state. We propose an efficient method to further narrow these states to those that remain highly probable in the long run, after the transient behavior of the system has dissipated. Our strategy is to quickly estimate the local maxima of the stationary distribution using the reaction rate formulation, which is of considerably smaller size than the full-blown chemical master equation, and from there develop adaptive schemes to profile the distribution around the maxima. We include numerical tests that show the efficiency of our approach.


Subject(s)
Cell Physiological Phenomena , Models, Biological , Models, Chemical , Computer Simulation , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...