Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37052981

ABSTRACT

Melatonin has been documented to alleviate compromised pregnancies and enhance livestock performance traits. The objective of this study was to determine the effect of prenatal and postnatal melatonin supplementation on overall calf performance and dam milking traits in relation to calves, molecular factors involved in growth and metabolism of calves, along with testicular physiology and fertility traits in subsequent bulls. On days 190, 220 and 250 of gestation, dams (N = 60) were administered either two subdermal ear melatonin implants (preMEL) or no implants (preCON). After parturition, birth weights were recorded and calves were blocked based on prenatal treatment and sex. Calves received either melatonin implants (posMEL) or none (posCON) on days 0, 30, and 60 of age. On day 60 of lactation, a subset of dams (N = 32) were selected based on age, weight, and calf sex for milk collection and analysis. At weaning, (day 210 postnatally) calf weight, morphometric data, liver samples, and loin samples were collected. At 12 mo of age, bull (N = 30) scrotal circumference, scrotal temperature, and testicular artery measurements were recorded. Milk yield and fat percent from dams tended to decrease in the preMEL group (P < 0.07) compared with preCON group. Prenatal melatonin administration did not affect (P = 0.95) calf birth weight and similarly calf weaning weight was unaffected (P < 0.10) by prenatal or postnatal melatonin supplementation. Blood analysis demonstrated that plasma concentrations of melatonin were not different (P = 0.12) in dams; however, an increase (P < 0.001) in plasma concentrations of melatonin was observed in posMEL vs. posCON calves. A tendency (P < 0.10) for decreased MYF5 and MYOD1 expression in loin muscle was observed in the posMEL calves. Prenatal and postnatal melatonin administration did not affect subsequent bull scrotal measurements or testicular hemodynamics (P ≥ 0.14). Administering supplemental melatonin via implants during the prenatal and postnatal phase did not alter performance characteristics in offspring. In this study, dams were implanted in winter months, whereas calves were implanted in the spring months. Seasonal differences involving photoperiod and ambient temperature might have attributed to a lack of differences in melatonin levels during the prenatal phase. In the postnatal period, the level of developmental plasticity appears to be too low for melatonin properties to be effective.


Previous studies have examined maternal melatonin implants in fall calving Mississippi cattle during the third trimester of pregnancy. These studies have shown increased maternal uterine blood flow without any change in calf birth weight when supplemented with melatonin implants. However, calf weaning weights were increased in calves born to melatonin supplemented dams vs. their control counterparts. The objective of this study was to examine offspring performance following maternal melatonin supplementation (prenatal) and/or postnatal calf melatonin supplementation in spring calving Montana cattle. Calf performance and weight at weaning were not affected by maternal or postnatal melatonin supplementation. However, dam milk yield and fat percent were decreased in the melatonin supplemented dams. Maternal and postnatal melatonin supplementation did not affect bull measurements of reproductive performance. Interestingly, maternal concentrations of melatonin were not different between dam treatment groups; however, postnatal melatonin supplementation increased calf concentrations of melatonin. In this study, dams were implanted in winter months, whereas calves were implanted in the spring months. Seasonal differences involving photoperiod and ambient temperature may attribute to a lack of differences in melatonin levels during the prenatal phase.


Subject(s)
Melatonin , Pregnancy , Female , Animals , Cattle , Male , Melatonin/pharmacology , Melatonin/metabolism , Parturition , Milk/metabolism , Hemodynamics , Birth Weight , Dietary Supplements
2.
Placenta ; 117: 122-130, 2022 01.
Article in English | MEDLINE | ID: mdl-34883456

ABSTRACT

INTRODUCTION: Prenatal development is reliant on a functioning placenta, which can be influenced by maternal nutrition. Moreover, the variation in cotyledonary capacity within an animal has not been fully examined to date. Therefore, the purpose of this study was to determine the effect of (1) placentome size and (2) maternal nutrient restriction on molecular, microscopic, and macroscopic features of bovine placentomes during late gestation. METHODS: Pregnant cows (n = 6) were placed into one of 2 treatments: CON (100% NRC) vs RES (60% of NRC) from day 140 until slaughter at day 240 of gestation. Placentomes of various sizes were perfused to assess macroscopic blood vessel density of the cotyledon. Microscopic imaging and RNA extraction for sequencing was performed. RESULTS: Macroscopic blood vessel density relative to placentome weight was not different (P = 0.42) among small, medium, or large placentomes. Cotyledonary microscopic blood vessel number, area, and perimeter was increased (P < 0.005) in high versus low blood perfusion areas. Differential expressed gene (DEG) analysis showed 209 upregulations and 168 downregulations in the RES group (P ≤ 0.0001). Gene Ontology (GO) analysis showed that downregulated enriched terms were involved in blood vessel and mesenchymal stem cells development, whereas upregulated enriched terms were involved with translation and ribosomal function. DISCUSSION: This study demonstrates that placentome function is uniform across various placentome sizes within an animal. However, microscopic heterogeneity exists within each placentome. Maternal nutrient constraints alter placental transcriptomics which may yield compensatory mechanisms involved in nutrient transport including increased perimeter.


Subject(s)
Food Deprivation/physiology , Maternal Nutritional Physiological Phenomena , Placenta/blood supply , Transcriptome , Animals , Cattle , Female , Gene Expression , Placenta/metabolism , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...