Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Am Pharm Assoc (2003) ; 64(3): 102067, 2024.
Article in English | MEDLINE | ID: mdl-38490332

ABSTRACT

BACKGROUND: Depression is a major source of morbidity but often goes undiagnosed. Broader screening is recommended, and pharmacists could contribute. OBJECTIVES: This study aimed to assess the feasibility of community pharmacy depression and anxiety screening and describe the medication-related problems (MRPs) identified, pharmacist interventions, and provider responses for high-risk patients. METHODS: This pilot was conducted between October 2022 and January 2023 at an independently owned community pharmacy in the Midwest United States. Patients aged 18-45 years with ready prescriptions were identified through weekly reports, and tags were placed on prescription bags. A convenience sample of patients fluent in English were offered the Patient Health Questionnaire (PHQ2) and Generalized Anxiety Disorder (GAD2), with follow-up PHQ9 and GAD7 for at-risk individuals. High-risk individuals met with the pharmacist for consultation and recommendations were discussed. Descriptive statistics were calculated for participant demographics, questionnaire responses, MRPs, and provider responses. Patient profiles were examined 2 months after the workup to identify medication changes. RESULTS: A total of 29 patients volunteered to be screened for anxiety and depression; of these, 41% scored in the high-risk category for depression or anxiety and met with the pharmacist for the consultation. The pharmacist identified multiple MRPs. The most common was the need for additional therapy and inadequate dosages. Patients were reluctant for the pharmacist to follow up with their prescriber and were unreachable for telephone follow-up. Profiles reviewed 2 months after assessment showed half of the at-risk patients had one or more mental health medication changes. CONCLUSION: Community pharmacists may have a role in the screening and management of patient mental health, although there were challenges with screening uptake and follow-up. The pharmacist identified multiple MRPs for this high-risk group for which greater routine monitoring and follow-up may be beneficial. More work seems needed to engage both patients and prescribers.


Subject(s)
Anxiety , Community Pharmacy Services , Depression , Mass Screening , Pharmacists , Professional Role , Humans , Adult , Female , Male , Community Pharmacy Services/organization & administration , Middle Aged , Depression/diagnosis , Depression/drug therapy , Pilot Projects , Anxiety/drug therapy , Anxiety/diagnosis , Mass Screening/methods , Young Adult , Adolescent , Surveys and Questionnaires , Midwestern United States , Feasibility Studies
2.
J Neuroinflammation ; 18(1): 302, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34952603

ABSTRACT

BACKGROUND: Spinal cord injury elicits widespread inflammation that can exacerbate long-term neurologic deficits. Neutrophils are the most abundant immune cell type to invade the spinal cord in the early acute phase after injury, however, their role in secondary pathogenesis and functional recovery remains unclear. We have previously shown that neutrophil functional responses during inflammation are augmented by spleen tyrosine kinase, Syk, a prominent intracellular signaling enzyme. In this study, we evaluated the contribution of Syk towards neutrophil function and long-term neurologic deficits after spinal cord injury. METHODS: Contusive spinal cord injury was performed at thoracic vertebra level 9 in mice with conditional deletion of Syk in neutrophils (Sykf/fMRP8-Cre). Hindlimb locomotor recovery was evaluated using an open-field test for 35 days following spinal cord injury. Long-term white matter sparing was assessed using eriochrome cyanide staining. Blood-spinal cord barrier disruption was evaluated by immunoblotting. Neutrophil infiltration, activation, effector functions, and cell death were determined by flow cytometry. Cytokine and chemokine expression in neutrophils was assessed using a gene array. RESULTS: Syk deficiency in neutrophils improved long-term functional recovery after spinal cord injury, but did not promote long-term white matter sparing. Neutrophil activation, cytokine expression, and cell death in the acutely injured spinal cord were attenuated by the genetic loss of Syk while neutrophil infiltration and effector functions were not affected. Acute blood-spinal cord barrier disruption was also unaffected by Syk deficiency in neutrophils. CONCLUSIONS: Syk facilitates specific neutrophil functional responses to spinal cord injury including activation, cytokine expression, and cell death. Long-term neurologic deficits are exacerbated by Syk signaling in neutrophils independent of acute blood-spinal cord barrier disruption and long-term white matter sparing. These findings implicate Syk in pathogenic neutrophil activities that worsen long-term functional recovery after spinal cord injury.


Subject(s)
Nervous System Diseases/etiology , Nervous System Diseases/pathology , Neutrophil Activation , Spinal Cord Injuries/complications , Spinal Cord Injuries/pathology , Spleen/enzymology , Syk Kinase/genetics , Animals , Apoptosis , Cell Death , Chemokines/biosynthesis , Cytokines/biosynthesis , Female , Hindlimb/innervation , Male , Mice , Mice, Inbred C57BL , Neutrophil Infiltration , Recovery of Function , White Matter/pathology
3.
Clin Proteomics ; 18(1): 27, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34794390

ABSTRACT

BACKGROUND AND AIMS: Liver transplantation (LT) can be offered to patients with Hepatocellular carcinoma (HCC) beyond Milan criteria. However, there are currently limited molecular markers on HCC explant histology to predict recurrence, which arises in up to 20% of LT recipients. The goal of our study was to derive a combined proteomic/transcriptomic signature on HCC explant predictive of recurrence post-transplant using unbiased, high-throughput approaches. METHODS: Patients who received a LT for HCC beyond Milan criteria in the context of hepatitis B cirrhosis were identified. Tumor explants from patients with post-transplant HCC recurrence (N = 7) versus those without recurrence (N = 4) were analyzed by mass spectrometry and gene expression array. Univariate analysis was used to generate a combined proteomic/transcriptomic signature linked to recurrence. Significantly predictive genes and proteins were verified and internally validated by immunoblotting and immunohistochemistry. RESULTS: Seventy-nine proteins and 636 genes were significantly differentially expressed in HCC tumors with subsequent recurrence (p < 0.05). Univariate survival analysis identified Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) gene (HR = 0.084, 95%CI 0.01-0.68, p = 0.0152), ALDH1A1 protein (HR = 0.039, 95%CI 0.16-0.91, p = 0.03), Galectin 3 Binding Protein (LGALS3BP) gene (HR = 7.14, 95%CI 1.20-432.96, p = 0.03), LGALS3BP protein (HR = 2.6, 95%CI 1.1-6.1, p = 0.036), Galectin 3 (LGALS3) gene (HR = 2.89, 95%CI 1.01-8.3, p = 0.049) and LGALS3 protein (HR = 2.6, 95%CI 1.2-5.5, p = 0.015) as key dysregulated analytes in recurrent HCC. In concordance with our proteome findings, HCC recurrence was linked to decreased ALDH1A1 and increased LGALS3 protein expression by Western Blot. LGALS3BP protein expression was validated in 29 independent HCC samples. CONCLUSIONS: Significantly increased LGALS3 and LGALS3BP gene and protein expression on explant were associated with post-transplant recurrence, whereas increased ALDH1A1 was associated with absence of recurrence in patients transplanted for HCC beyond Milan criteria. This combined proteomic/transcriptomic signature could help in predicting HCC recurrence risk and guide post-transplant surveillance.

4.
Front Cell Neurosci ; 15: 684792, 2021.
Article in English | MEDLINE | ID: mdl-34408627

ABSTRACT

The spinal cord contains a diverse array of sensory and motor circuits that are essential for normal function. Spinal cord injury (SCI) permanently disrupts neural circuits through initial mechanical damage, as well as a cascade of secondary injury events that further expand the spinal cord lesion, resulting in permanent paralysis. Tissue clearing and 3D imaging have recently emerged as promising techniques to improve our understanding of the complex neural circuitry of the spinal cord and the changes that result from damage due to SCI. However, the application of this technology for studying the intact and injured spinal cord remains limited. Here, we optimized the passive CLARITY technique (PACT) to obtain gentle and efficient clearing of the murine spinal cord without the need for specialized equipment. We demonstrate that PACT clearing enables 3D imaging of multiple fluorescent labels in the spinal cord to assess molecularly defined neuronal populations, acute inflammation, long-term tissue damage, and cell transplantation. Collectively, these procedures provide a framework for expanding the utility of tissue clearing to enhance the study of spinal cord neural circuits, as well as cellular- and tissue-level changes that occur following SCI.

5.
J Am Soc Nephrol ; 32(9): 2117-2124, 2021 09.
Article in English | MEDLINE | ID: mdl-34108233

ABSTRACT

Ischemia reperfusion injury (IRI) is the most common cause of in-hospital AKI and is associated with increased morbidity and mortality. IRI is associated with an early phase of inflammation primarily regulated by the canonical NFκB signaling pathway. Despite recent advances in our understanding of the pathogenesis of IRI, few therapeutic strategies have emerged. The purpose of this manuscript is to review interventions targeting NFκB after IRI.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/therapy , NF-kappa B/physiology , Reperfusion Injury/etiology , Reperfusion Injury/therapy , Acute Kidney Injury/pathology , Humans , Signal Transduction/physiology
6.
Mol Cell Proteomics ; 20: 100101, 2021.
Article in English | MEDLINE | ID: mdl-34033948

ABSTRACT

Normothermic ex-vivo kidney perfusion (NEVKP) results in significantly improved graft function in porcine auto-transplant models of donation after circulatory death injury compared with static cold storage (SCS); however, the molecular mechanisms underlying these beneficial effects remain unclear. We performed an unbiased proteomics analysis of 28 kidney biopsies obtained at three time points from pig kidneys subjected to 30 min of warm ischemia, followed by 8 h of NEVKP or SCS, and auto-transplantation. 70/6593 proteins quantified were differentially expressed between NEVKP and SCS groups (false discovery rate < 0.05). Proteins increased in NEVKP mediated key metabolic processes including fatty acid ß-oxidation, the tricarboxylic acid cycle, and oxidative phosphorylation. Comparison of our findings with external datasets of ischemia-reperfusion and other models of kidney injury confirmed that 47 of our proteins represent a common signature of kidney injury reversed or attenuated by NEVKP. We validated key metabolic proteins (electron transfer flavoprotein subunit beta and carnitine O-palmitoyltransferase 2, mitochondrial) by immunoblotting. Transcription factor databases identified members of the peroxisome proliferator-activated receptors (PPAR) family of transcription factors as the upstream regulators of our dataset, and we confirmed increased expression of PPARA, PPARD, and RXRA in NEVKP with reverse transcription polymerase chain reaction. The proteome-level changes observed in NEVKP mediate critical metabolic pathways. These effects may be coordinated by PPAR-family transcription factors and may represent novel therapeutic targets in ischemia-reperfusion injury.


Subject(s)
Kidney/metabolism , Mitochondrial Proteins/metabolism , Animals , Kidney Transplantation , Male , Perfusion , Peroxisome Proliferator-Activated Receptors/metabolism , Proteomics , Swine
7.
Int J Mol Sci ; 21(24)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348732

ABSTRACT

Renal ischemia reperfusion injury (IRI) is associated with inflammation, including neutrophil infiltration that exacerbates the initial ischemic insult. The molecular pathways involved are poorly characterized and there is currently no treatment. We performed an in silico analysis demonstrating changes in NFκB-mediated gene expression in early renal IRI. We then evaluated NFκB-blockade with a BRD4 inhibitor on neutrophil adhesion to endothelial cells in vitro, and tested BRD4 inhibition in an in vivo IRI model. BRD4 inhibition attenuated neutrophil adhesion to activated endothelial cells. In vivo, IRI led to increased expression of cytokines and adhesion molecules at 6 h post-IRI with sustained up-regulated expression to 48 h post-IRI. These effects were attenuated, in part, with BRD4 inhibition. Absolute neutrophil counts increased significantly in the bone marrow, blood, and kidney 24 h post-IRI. Activated neutrophils increased in the blood and kidney at 6 h post-IRI and remained elevated in the kidney until 48 h post-IRI. BRD4 inhibition reduced both total and activated neutrophil counts in the kidney. IRI-induced tubular injury correlated with neutrophil accumulation and was reduced by BRD4 inhibition. In summary, BRD4 inhibition has important systemic and renal effects on neutrophils, and these effects are associated with reduced renal injury.


Subject(s)
Cell Adhesion/drug effects , Cell Cycle Proteins/antagonists & inhibitors , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Neutrophil Activation/drug effects , Neutrophils/immunology , Nuclear Proteins/antagonists & inhibitors , Reperfusion Injury/metabolism , Transcription Factors/antagonists & inhibitors , Animals , Cell Cycle Proteins/metabolism , Cell Line, Transformed , Cell Survival/drug effects , Disease Models, Animal , Humans , Kidney/cytology , Kidney/metabolism , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Neutrophils/drug effects , Nuclear Proteins/metabolism , Reperfusion Injury/immunology , Signal Transduction/drug effects , Transcription Factors/metabolism
8.
Transplantation ; 103(6): e146-e158, 2019 06.
Article in English | MEDLINE | ID: mdl-30801542

ABSTRACT

BACKGROUND: Interstitial fibrosis/tubular atrophy (IFTA) is an important cause of kidney allograft loss; however, noninvasive markers to identify IFTA or guide antifibrotic therapy are lacking. Using angiotensin II (AngII) as the prototypical inducer of IFTA, we previously identified 83 AngII-regulated proteins in vitro. We developed mass spectrometry-based assays for quantification of 6 AngII signature proteins (bone marrow stromal cell antigen 1, glutamine synthetase [GLNA], laminin subunit beta-2, lysophospholipase I, ras homolog family member B, and thrombospondin-I [TSP1]) and hypothesized that their urine excretion will correlate with IFTA in kidney transplant patients. METHODS: Urine excretion of 6 AngII-regulated proteins was quantified using selected reaction monitoring and normalized by urine creatinine. Immunohistochemistry was used to assess protein expression of TSP1 and GLNA in kidney biopsies. RESULTS: The urine excretion rates of AngII-regulated proteins were found to be increased in 15 kidney transplant recipients with IFTA compared with 20 matched controls with no IFTA (mean log2[fmol/µmol of creatinine], bone marrow stromal cell antigen 1: 3.8 versus 3.0, P = 0.03; GLNA: 1.2 versus -0.4, P = 0.03; laminin subunit beta-2: 6.1 versus 5.4, P = 0.06; lysophospholipase I: 2.1 versus 0.6, P = 0.002; ras homolog family member B: 1.2 versus -0.1, P = 0.006; TSP1_GGV: 2.5 versus 1.9; P = 0.15; and TSP1_TIV: 2.0 versus 0.6, P = 0.0006). Receiver operating characteristic curve analysis demonstrated an area under the curve = 0.86 for the ability of urine AngII signature proteins to discriminate IFTA from controls. Urine excretion of AngII signature proteins correlated strongly with chronic IFTA and total inflammation. In a separate cohort of 19 kidney transplant recipients, the urine excretion of these 6 proteins was significantly lower following therapy with AngII inhibitors (P < 0.05). CONCLUSIONS: AngII-regulated proteins may represent markers of IFTA and guide antifibrotic therapies.


Subject(s)
Angiotensin II/metabolism , Biomarkers/urine , Kidney Diseases/urine , Kidney Transplantation/adverse effects , Kidney/metabolism , ADP-ribosyl Cyclase/urine , Adult , Antigens, CD/urine , Case-Control Studies , Female , Fibrosis , GPI-Linked Proteins/urine , Glutamate-Ammonia Ligase/urine , Humans , Kidney/pathology , Kidney Diseases/etiology , Kidney Diseases/pathology , Laminin/urine , Male , Mass Spectrometry , Middle Aged , Predictive Value of Tests , Thiolester Hydrolases/urine , Thrombospondin 1/urine , Treatment Outcome , Urinalysis , rhoB GTP-Binding Protein/urine
9.
Sci Rep ; 7: 41999, 2017 02 06.
Article in English | MEDLINE | ID: mdl-28165020

ABSTRACT

The acronymously named "ESKAPE" pathogens represent a group of bacteria that continue to pose a serious threat to human health, not only due to their propensity for repeated emergence, but also due to their ability to "eskape" antibiotic treatment. The evolution of multi-drug resistance in these pathogens alone has greatly outpaced the development of new therapeutics, necessitating an alternative strategy for antibiotic development that considers the evolutionary mechanisms driving antibiotic resistance. In this study, we synthesize a novel inorganic antibiotic, phosphopyricin, which has antibiotic activity against the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). We show that this potent antibiotic is bactericidal, and exhibits low toxicity in an acute dose assay in mice. As a synthetic compound that does not occur naturally, phosphopyricin would be evolutionarily foreign to microbes, thereby slowing the evolution of resistance. In addition, it loses antibiotic activity upon exposure to light, meaning that the active antibiotic will not accumulate in the general environment where strong selective pressures imposed by antibiotic residuals are known to accelerate resistance. Phosphopyricin represents an innovation in antimicrobials, having a synthetic core, and a photosensitive chemical architecture that would reduce accumulation in the environment.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Drug Resistance, Multiple, Bacterial/drug effects , Inorganic Chemicals/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Animals , Bacteria/isolation & purification , Bacterial Infections/microbiology , Female , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests
10.
Clin Proteomics ; 13: 16, 2016.
Article in English | MEDLINE | ID: mdl-27499720

ABSTRACT

BACKGROUND: Angiotensin-II (Ang II) mediates progression of autosomal-dominant polycystic kidney disease (ADPKD) and other chronic kidney diseases (CKD). However, markers of kidney Ang II activity are lacking. We previously defined 83 Ang II-regulated proteins in vitro, which reflected kidney Ang II activity in vivo. METHODS: In this study, we developed selected reaction monitoring (SRM) assays for quantification of Ang II-regulated proteins in urine of ADPKD and CKD patients. We demonstrated that 47 of 83 Ang II-regulated transcripts were differentially expressed in cystic compared to normal kidney tissue. We then developed SRM assays for 18 Ang II-regulated proteins overexpressed in cysts and/or secreted in urine. Methods that yielded CV ≤ 6 % for control proteins, and recovery ~100 % were selected. Heavy-labeled peptides corresponding to 13 identified Ang II-regulated peptides were spiked into urine samples of 17 ADPKD patients, 9 patients with CKD predicted to have high kidney Ang II activity and 11 healthy subjects. Samples were then digested and analyzed on triple-quadrupole mass spectrometer in duplicates. RESLUTS: Calibration curves demonstrated linearity (R(2) > 0.99) and within-run CVs < 9 % in the concentration range of 7/13 peptides. Peptide concentrations were normalized by urine creatinine. Deamidated peptide forms were monitored, and accounted for <15 % of the final concentrations. Urine excretion rates of proteins BST1, LAMB2, LYPA1, RHOB and TSP1 were significantly different (p < 0.05, one-way ANOVA) between patients with CKD, those with ADPKD and healthy controls. Urine protein excretion rates were highest in CKD patients and lowest in ADPKD patients. Univariate analysis demonstrated significant association between urine protein excretion rates of most proteins and disease group (p < 0.05, ANOVA) as well as sex (p < 0.05, unpaired t test). Multivariate analysis across protein concentration, age and sex demonstrated good separation between ADPKD and CKD patients. CONCLUSIONS: We have optimized methods for quantification of Ang II-regulated proteins, and we demonstrated that they reflected differences in underlying kidney disease in this pilot study. High urine excretion of Ang II-regulated proteins in CKD patients likely reflects high kidney Ang II activity. Low excretion in ADPKD appears related to lack of communication between cysts and tubules. Future studies will determine whether urine excretion rate of Ang II-regulated proteins correlates with kidney Ang II activity in larger cohorts of chronic kidney disease patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...