Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 327(5963): 328-31, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20075252

ABSTRACT

Artemisinin is a plant natural product produced by Artemisia annua and the active ingredient in the most effective treatment for malaria. Efforts to eradicate malaria are increasing demand for an affordable, high-quality, robust supply of artemisinin. We performed deep sequencing on the transcriptome of A. annua to identify genes and markers for fast-track breeding. Extensive genetic variation enabled us to build a detailed genetic map with nine linkage groups. Replicated field trials resulted in a quantitative trait loci (QTL) map that accounts for a significant amount of the variation in key traits controlling artemisinin yield. Enrichment for positive QTLs in parents of new high-yielding hybrids confirms that the knowledge and tools to convert A. annua into a robust crop are now available.


Subject(s)
Antimalarials/metabolism , Artemisia/genetics , Artemisia/metabolism , Artemisinins/metabolism , Chromosome Mapping , Genes, Plant , Quantitative Trait Loci , Crosses, Genetic , DNA, Complementary , Gene Expression Profiling , Genetic Association Studies , Humans , Malaria/drug therapy , Mutation , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
2.
Hum Mol Genet ; 11(21): 2591-7, 2002 Oct 01.
Article in English | MEDLINE | ID: mdl-12354784

ABSTRACT

Fanconi anemia (FA) is a rare autosomal recessive disease characterized by skeletal defects, anemia, chromosomal instability and increased risk of leukemia. At the cellular level FA is characterized by increased sensitivity to agents forming interstrand crosslinks (ICL) in DNA. Six FA genes have been cloned and interactions among individual FANC proteins have been found. The FANCD2 protein co-localizes in nuclear foci with the BRCA1 protein following DNA damage and during S-phase, requiring the FANCA, C, E and G proteins to do so. This finding may reflect a direct role for the BRCA1 protein in double strand break (DSB) repair and interaction with the FANC proteins. Therefore interactions between BRCA1 and the FANC proteins were investigated. Among the known FANC proteins, we find evidence for direct interaction only between the FANCA protein and BRCA1. The evidence rests on three different tests: yeast two-hybrid analysis, coimmunoprecipitation from in vitro synthesis, and coimmunoprecipitation from cell extracts. The amino terminal portion of FANCA and the central part (aa 740-1083) of BRCA1 contain the sites of interaction. The interaction does not depend on DNA damage, thus FANCA and BRCA1 are constitutively interacting. The demonstrated interaction directly connects BRCA1 to the FA pathway of DNA repair.


Subject(s)
BRCA1 Protein/metabolism , DNA-Binding Proteins , Proteins/metabolism , Fanconi Anemia/genetics , Fanconi Anemia Complementation Group A Protein , Fanconi Anemia Complementation Group D2 Protein , Humans , In Vitro Techniques , Nuclear Proteins/metabolism , Precipitin Tests , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...