Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Antiviral Res ; 197: 105211, 2022 01.
Article in English | MEDLINE | ID: mdl-34826506

ABSTRACT

AB-506, a small-molecule inhibitor targeting the HBV core protein, inhibits viral replication in vitro (HepAD38 cells: EC50 of 0.077 µM, CC50 > 25 µM) and in vivo (HBV mouse model: ∼3.0 log10 reductions in serum HBV DNA compared to the vehicle control). Binding of AB-506 to HBV core protein accelerates capsid assembly and inhibits HBV pgRNA encapsidation. Furthermore, AB-506 blocks cccDNA establishment in HBV-infected HepG2-hNTCP-C4 cells and primary human hepatocytes, leading to inhibition of viral RNA, HBsAg, and HBeAg production (EC50 from 0.64 µM to 1.92 µM). AB-506 demonstrated activity across HBV genotypes A-H and maintains antiviral activity against nucleos(t)ide analog-resistant variants in vitro. Evaluation of AB-506 against a panel of core variants showed that T33N/Q substitutions results in >200-fold increase in EC50 values, while L30F, L37Q, and I105T substitutions showed an 8 to 20-fold increase in EC50 values in comparison to the wild-type. In vitro combinations of AB-506 with NAs or an RNAi agent were additive to moderately synergistic. AB-506 exhibits good oral bioavailability, systemic exposure, and higher liver to plasma ratios in rodents, a pharmacokinetic profile supporting clinical development for chronic hepatitis B.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis B virus/drug effects , Viral Core Proteins/antagonists & inhibitors , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacokinetics , Cells, Cultured , Drug Evaluation, Preclinical , Female , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/virology , Humans , Mice , Rats , Virus Assembly/drug effects
2.
Article in English | MEDLINE | ID: mdl-29555628

ABSTRACT

AB-423 is a member of the sulfamoylbenzamide (SBA) class of hepatitis B virus (HBV) capsid inhibitors in phase 1 clinical trials. In cell culture models, AB-423 showed potent inhibition of HBV replication (50% effective concentration [EC50] = 0.08 to 0.27 µM; EC90 = 0.33 to 1.32 µM) with no significant cytotoxicity (50% cytotoxic concentration > 10 µM). Addition of 40% human serum resulted in a 5-fold increase in the EC50s. AB-423 inhibited HBV genotypes A through D and nucleos(t)ide-resistant variants in vitro Treatment of HepDES19 cells with AB-423 resulted in capsid particles devoid of encapsidated pregenomic RNA and relaxed circular DNA (rcDNA), indicating that it is a class II capsid inhibitor. In a de novo infection model, AB-423 prevented the conversion of encapsidated rcDNA to covalently closed circular DNA, presumably by interfering with the capsid uncoating process. Molecular docking of AB-423 into crystal structures of heteroaryldihydropyrimidines and an SBA and biochemical studies suggest that AB-423 likely also binds to the dimer-dimer interface of core protein. In vitro dual combination studies with AB-423 and anti-HBV agents, such as nucleos(t)ide analogs, RNA interference agents, or interferon alpha, resulted in additive to synergistic antiviral activity. Pharmacokinetic studies with AB-423 in CD-1 mice showed significant systemic exposures and higher levels of accumulation in the liver. A 7-day twice-daily administration of AB-423 in a hydrodynamic injection mouse model of HBV infection resulted in a dose-dependent reduction in serum HBV DNA levels, and combination with entecavir or ARB-1467 resulted in a trend toward antiviral activity greater than that of either agent alone, consistent with the results of the in vitro combination studies. The overall preclinical profile of AB-423 supports its further evaluation for safety, pharmacokinetics, and antiviral activity in patients with chronic hepatitis B.


Subject(s)
Antiviral Agents/pharmacology , Capsid/metabolism , Hepatitis B virus/drug effects , Hepatitis B/drug therapy , Virus Assembly/drug effects , Animals , Binding Sites , Cell Line, Tumor , DNA, Circular/metabolism , DNA, Viral/blood , DNA, Viral/metabolism , Female , Guanine/analogs & derivatives , Guanine/pharmacology , Hepatitis B virus/growth & development , Humans , Mice , Molecular Docking Simulation , Protein Binding , RNA, Viral/genetics
4.
Carbohydr Res ; 341(1): 49-59, 2006 Jan 16.
Article in English | MEDLINE | ID: mdl-16303119

ABSTRACT

The putative beta-glucuronidase from Thermotoga maritima, comprising 563 amino acid residues conjugated with a Hisx6 tag, was cloned and expressed in Escherichia coli. The enzyme has a moderately broad specificity, hydrolysing a range of p-nitrophenyl glycoside substrates, but has greatest activity on p-nitrophenyl beta-D-glucosiduronic acid (kcat=68 s(-1), kcat/K(M)= 4.5x10(5) M(-1) s(-1)). The enzyme also shows a relatively broad pH-dependence with activity from pH4.5 to 7.5 and a maximum at pH6.5. As expected the enzyme is stable towards heat denaturation, with a half life of 3h at 85 degrees C, in contrast to the mesophilic E. coli enzyme, which has a half life of 2.6h at 50 degrees C. The identity of the catalytic nucleophile was confirmed as Glu476 within the sequence VTEFGAD by trapping the glycosyl-enzyme intermediate using the mechanism-based inactivator, 2-deoxy-2-fluoro-beta-D-glucosyluronic acid fluoride and identifying the labeled peptide in peptic digests by HPLC-MS/MS methodologies. Consistent with this, the Glu476Ala mutant was shown to be hydrolytically inactive. The acid/base catalyst was confirmed as Glu383 by generation and kinetic analysis of enzyme mutants modified at that position, Glu383Ala and Glu383Gln. The demonstration of activity rescue by azide is consistent with the proposed role for this residue. This enzyme therefore appears suitable for use in enzymatic oligosaccharide synthesis in either the transglycosylation mode or by use of glycosynthase and thioglycoligase approaches.


Subject(s)
Cloning, Molecular/methods , Glucuronidase/biosynthesis , Glucuronidase/genetics , Thermotoga maritima/enzymology , Amino Acid Sequence , Animals , Binding Sites , Circular Dichroism , Enzyme Stability , Escherichia coli/enzymology , Glucuronidase/antagonists & inhibitors , Hot Temperature , Humans , Kinetics , Molecular Sequence Data , Mutation , Sequence Alignment , Spectrometry, Mass, Electrospray Ionization , Substrate Specificity
5.
J Biol Chem ; 279(14): 13478-87, 2004 Apr 02.
Article in English | MEDLINE | ID: mdl-14724290

ABSTRACT

Tay-Sachs and Sandhoff diseases are lysosomal storage disorders that result from an inherited deficiency of beta-hexosaminidase A (alphabeta). Whereas the acute forms are associated with a total absence of hexosaminidase A and early death, the chronic adult forms exist with activity and protein levels of approximately 5%, and unaffected individuals have been found with only 10% of normal levels. Surprisingly, almost all disease-associated missense mutations do not affect the active site of the enzyme but, rather, inhibit its ability to obtain and/or retain its native fold in the endoplasmic reticulum, resulting in its retention and accelerated degradation. By growing adult Tay-Sachs fibroblasts in culture medium containing known inhibitors of hexosaminidase we have raised the residual protein and activity levels of intralysosomal hexosaminidase A well above the critical 10% of normal levels. A similar effect was observed in fibroblasts from an adult Sandhoff patient. We propose that these hexosaminidase inhibitors function as pharmacological chaperones, enhancing the stability of the native conformation of the enzyme, increasing the amount of hexosaminidase A capable of exiting the endoplasmic reticulum for transport to the lysosome. Therefore, pharmacological chaperones could provide a novel approach to the treatment of adult Tay-Sachs and possibly Sandhoff diseases.


Subject(s)
Enzyme Inhibitors/pharmacology , Hymecromone/analogs & derivatives , Sandhoff Disease/metabolism , Tay-Sachs Disease/metabolism , beta-N-Acetylhexosaminidases/metabolism , Adult , Cell Line , Enzyme Activation/drug effects , Female , Fibroblasts/cytology , Fibroblasts/enzymology , Hexosaminidase A , Hot Temperature , Humans , In Vitro Techniques , Lysosomes/enzymology , Molecular Chaperones/pharmacology , Mutation , Protein Folding , Sandhoff Disease/drug therapy , Tay-Sachs Disease/drug therapy , beta-N-Acetylhexosaminidases/chemistry , beta-N-Acetylhexosaminidases/genetics
6.
Biochemistry ; 42(23): 7195-204, 2003 Jun 17.
Article in English | MEDLINE | ID: mdl-12795616

ABSTRACT

The chemical mechanism of a retaining beta-mannosidase from Cellulomonas fimi has been characterized through steady-state kinetic analyses with a range of substrates, coupled with chemical rescue studies on both the wild-type enzyme and mutants in which active site carboxyl groups have been replaced. Studies with a series of aryl beta-mannosides of vastly different reactivities (pK(a)(lg) = 4-10) allowed kinetic isolation of the glycosylation and deglycosylation steps. Substrate inhibition was observed for all but the least reactive of these substrates. Brønsted analysis of k(cat) revealed a downward breaking plot (beta(lg) = -0.54 +/- 0.05) that is consistent with a change in rate-determining step (glycosylation to deglycosylation), and this was confirmed by partitioning studies with ethylene glycol. The pH dependence of k(cat)/K(m) follows an apparent single ionization of a group of pK(a) = 7.65 that must be protonated for catalysis. The tentative assignment of E429 as the acid-base catalyst of Man2A on the basis of sequence alignments with other family 2 glycosidases was confirmed by the increased turnover rate observed for the mutant E429A in the presence of azide and fluoride, leading to the production of beta-mannosyl azide and beta-mannosyl fluoride, respectively. A pH-dependent chemical rescue of E429A activity is also observed with citrate. Substantial oxocarbenium ion character at the transition state was demonstrated by the alpha-deuterium kinetic isotope effect for Man2A E429A of alpha-D(V) = 1.12 +/- 0.01. Surprisingly, this isotope effect was substantially greater in the presence of azide (alpha-D(V) = 1.166 +/- 0.009). Likely involvement of acid/base catalysis was revealed by the pH dependence of k(cat) for Man2A E429A, which follows a bell-shaped profile described by pK(a) values of 6.1 and 8.4, substantially different from that of the wild-type enzyme. The glycosidic bond cleaving activity of Man2A E519A and E519S nucleophile mutants is restored with azide and fluoride and appears to correlate with the corresponding "glycosynthase" activities. The contribution of the substrate 2-hydroxyl to stabilization of the Man2A glycosylation transition state (DeltaDeltaG() = 5.1 kcal mol(-1)) was probed using a 2-deoxymannose substrate. This value, surprisingly, is comparable to that found from equivalent studies with beta-glucosidases despite the geometric differences at C-2 and the importance of hydrogen bonding at that position. Modes of stabilizing the mannosidase transition state are discussed.


Subject(s)
Cellulomonas/enzymology , Mannosidases/chemistry , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Catalysis , Fluorine Radioisotopes , Glycosylation , Hydrogen-Ion Concentration , Kinetics , Mannosidases/genetics , Mannosidases/metabolism , Mannosides/chemistry , Mannosides/metabolism , Mutagenesis , Nuclear Magnetic Resonance, Biomolecular/methods , Sequence Homology, Amino Acid , Substrate Specificity , Thermodynamics , beta-Mannosidase
SELECTION OF CITATIONS
SEARCH DETAIL
...