Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Yeast ; 35(3): 273-280, 2018 03.
Article in English | MEDLINE | ID: mdl-29084380

ABSTRACT

Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domain of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. This set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain.


Subject(s)
Fungal Proteins/metabolism , Saccharomyces cerevisiae/physiology , Transcription Factors/metabolism , DNA, Fungal , Fungal Proteins/genetics , Gene Library , Genetic Engineering , Promoter Regions, Genetic , Protein Binding , Transcription Factors/genetics
2.
Metab Eng ; 42: 115-125, 2017 07.
Article in English | MEDLINE | ID: mdl-28606738

ABSTRACT

Fatty alcohols in the C12-C18 range are used in personal care products, lubricants, and potentially biofuels. These compounds can be produced from the fatty acid pathway by a fatty acid reductase (FAR), yet yields from the preferred industrial host Saccharomyces cerevisiae remain under 2% of the theoretical maximum from glucose. Here we improved titer and yield of fatty alcohols using an approach involving quantitative analysis of protein levels and metabolic flux, engineering enzyme level and localization, pull-push-block engineering of carbon flux, and cofactor balancing. We compared four heterologous FARs, finding highest activity and endoplasmic reticulum localization from a Mus musculus FAR. After screening an additional twenty-one single-gene edits, we identified increasing FAR expression; deleting competing reactions encoded by DGA1, HFD1, and ADH6; overexpressing a mutant acetyl-CoA carboxylase; limiting NADPH and carbon usage by the glutamate dehydrogenase encoded by GDH1; and overexpressing the Δ9-desaturase encoded by OLE1 as successful strategies to improve titer. Our final strain produced 1.2g/L fatty alcohols in shake flasks, and 6.0g/L in fed-batch fermentation, corresponding to ~ 20% of the maximum theoretical yield from glucose, the highest titers and yields reported to date in S. cerevisiae. We further demonstrate high-level production from lignocellulosic feedstocks derived from ionic-liquid treated switchgrass and sorghum, reaching 0.7g/L in shake flasks. Altogether, our work represents progress towards efficient and renewable microbial production of fatty acid-derived products.


Subject(s)
Fatty Alcohols/metabolism , Lignin/metabolism , Metabolic Engineering , Saccharomyces cerevisiae/metabolism , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Animals , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Gene Deletion , Mice , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
3.
Nucleic Acids Res ; 45(1): 496-508, 2017 Jan 09.
Article in English | MEDLINE | ID: mdl-27899650

ABSTRACT

Despite the extensive use of Saccharomyces cerevisiae as a platform for synthetic biology, strain engineering remains slow and laborious. Here, we employ CRISPR/Cas9 technology to build a cloning-free toolkit that addresses commonly encountered obstacles in metabolic engineering, including chromosomal integration locus and promoter selection, as well as protein localization and solubility. The toolkit includes 23 Cas9-sgRNA plasmids, 37 promoters of various strengths and temporal expression profiles, and 10 protein-localization, degradation and solubility tags. We facilitated the use of these parts via a web-based tool, that automates the generation of DNA fragments for integration. Our system builds upon existing gene editing methods in the thoroughness with which the parts are standardized and characterized, the types and number of parts available and the ease with which our methodology can be used to perform genetic edits in yeast. We demonstrated the applicability of this toolkit by optimizing the expression of a challenging but industrially important enzyme, taxadiene synthase (TXS). This approach enabled us to diagnose an issue with TXS solubility, the resolution of which yielded a 25-fold improvement in taxadiene production.


Subject(s)
Bacterial Proteins/genetics , CRISPR-Cas Systems , DNA, Fungal/genetics , Endonucleases/genetics , Genetic Engineering/methods , RNA, Guide, Kinetoplastida/genetics , Saccharomyces cerevisiae/genetics , Bacterial Proteins/metabolism , CRISPR-Associated Protein 9 , Clustered Regularly Interspaced Short Palindromic Repeats , DNA, Fungal/metabolism , Endonucleases/metabolism , Gene Expression , Isomerases/genetics , Isomerases/metabolism , Plasmids/chemistry , Plasmids/metabolism , Promoter Regions, Genetic , RNA, Guide, Kinetoplastida/metabolism , Saccharomyces cerevisiae/metabolism , Software
4.
ACS Synth Biol ; 6(1): 159-166, 2017 01 20.
Article in English | MEDLINE | ID: mdl-27605473

ABSTRACT

Streptomyces have a rich history as producers of important natural products and this genus of bacteria has recently garnered attention for its potential applications in the broader context of synthetic biology. However, the dearth of genetic tools available to control and monitor protein production precludes rapid and predictable metabolic engineering that is possible in hosts such as Escherichia coli or Saccharomyces cerevisiae. In an effort to improve genetic tools for Streptomyces venezuelae, we developed a suite of standardized, orthogonal integration vectors and an improved method to monitor protein production in this host. These tools were applied to characterize heterologous promoters and various attB chromosomal integration sites. A final study leveraged the characterized toolset to demonstrate its use in producing the biofuel precursor bisabolene using a chromosomally integrated expression system. These tools advance S. venezuelae to be a practical host for future metabolic engineering efforts.


Subject(s)
Streptomyces/genetics , Streptomyces/metabolism , Biofuels , Genes, Reporter , Genetic Vectors , Luminescent Proteins/genetics , Metabolic Engineering/methods , Plasmids/genetics , Promoter Regions, Genetic , Sesquiterpenes/chemistry , Sesquiterpenes/metabolism , Synthetic Biology
5.
Sci Rep ; 6: 19512, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26781725

ABSTRACT

Enhancing xylose utilization has been a major focus in Saccharomyces cerevisiae strain-engineering efforts. The incentive for these studies arises from the need to use all sugars in the typical carbon mixtures that comprise standard renewable plant-biomass-based carbon sources. While major advances have been made in developing utilization pathways, the efficient import of five carbon sugars into the cell remains an important bottleneck in this endeavor. Here we use an engineered S. cerevisiae BY4742 strain, containing an established heterologous xylose utilization pathway, and imposed a laboratory evolution regime with xylose as the sole carbon source. We obtained several evolved strains with improved growth phenotypes and evaluated the best candidate using genome resequencing. We observed remarkably few single nucleotide polymorphisms in the evolved strain, among which we confirmed a single amino acid change in the hexose transporter HXT7 coding sequence to be responsible for the evolved phenotype. The mutant HXT7(F79S) shows improved xylose uptake rates (Vmax = 186.4 ± 20.1 nmol•min(-1)•mg(-1)) that allows the S. cerevisiae strain to show significant growth with xylose as the sole carbon source, as well as partial co-utilization of glucose and xylose in a mixed sugar cultivation.


Subject(s)
Glucose/metabolism , Monosaccharide Transport Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Xylose/metabolism , Biomass , Carbon/metabolism , Monosaccharide Transport Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...