Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 86(18): 9058-64, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25131684

ABSTRACT

Two pulsed thermoelectrically cooled mid-infrared distributed feedback quantum cascade lasers (QCLs) were used for the quasi-simultaneous in-line determination of NO and NO2 at the caloric power plant Dürnrohr (Austria). The QCL beams were combined using a bifurcated hollow fiber, sent through the flue tube (inside diameter: 5.5 m), reflected by a retro-reflector and recorded using a fast thermoelectrically cooled mercury-cadmium-telluride detector. The thermal chirp during 300 ns pulses was about 1.2 cm(-1) and allowed scanning of rotational vibrational doublets of the analytes. On the basis of the thermal chirp and the temporal resolution of data acquisition, a spectral resolution of approximately 0.02 cm(-1) was achieved. The recorded rotational vibrational absorption lines were centered at 1900 cm(-1) for NO and 1630 cm(-1) for NO2. Despite water content in the range of 152-235 g/m(3) and an average particle load of 15.8 mg/m(3) in the flue gas, in-line measurements were possible achieving limits of detection of 73 ppb for NO and 91 ppb for NO2 while optimizing for a single analyte. Quasi-simultaneous measurements resulted in limits of detection of 219 ppb for NO and 164 ppb for NO2, respectively. Influences of temperature and pressure on the data evaluation are discussed, and results are compared to an established reference method based on the extractive measurements presented.

2.
Appl Spectrosc ; 67(12): 1368-75, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24359649

ABSTRACT

Two thermoelectrically cooled mid-infrared distributed feedback quantum cascade lasers operated in pulsed mode have been used for the quasi-simultaneous determination of NO and NO2 in the sub-parts per million meter (sub-ppm-m) range. Using a beam splitter, the beams of the two lasers were combined and sent to a retro-reflector. The returned light was recorded with a thermoelectrically cooled mercury cadmium telluride detector with a rise time of 4 ns. Alternate operation of the lasers with pulse lengths of 300 ns and a repetition rate of 66 kHz allowed quasi-simultaneous measurements. During each pulse the laser temperature increased, causing a thermal chirp of the laser line of up to 1.3 cm(-1). These laser chirps were sufficient to scan rotational bands of NO centered at 1902 cm(-1) and NO2 located at 1632 cm(-1). In that way an absorption spectrum could be recorded from a single laser pulse. Currently achieved limits of detection are 600 parts per billion meter (ppb-m) for NO and 260 ppb-m for NO2 using signal averaging over 1 min. This work presents the first steps toward a portable stand-off, open-path instrument that uses thermoelectrically cooled detector and lasers.

SELECTION OF CITATIONS
SEARCH DETAIL
...