Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 38(20): 4174-7, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24321952

ABSTRACT

The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied. However, the interplay between these two phenomena, especially at the network level, is unexplored. Here, we experimentally compare these phenomena by controlling the heterogeneity of the coupling delay times of two lasers. While chaotic lasers exhibit deterioration in synchronization as the time delay heterogeneity increases, phase synchronization is found to be independent of heterogeneity. The experimental results are found to be in agreement with numerical simulations for semiconductor lasers.


Subject(s)
Lasers , Nonlinear Dynamics
2.
Opt Express ; 20(4): 4352-9, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-22418193

ABSTRACT

Topologies of two, three and four time-delay-coupled chaotic semiconductor lasers are experimentally and theoretically found to show new types of synchronization. Generalized zero-lag synchronization is observed for two lasers separated by long distances even when their self-feedback delays are not equal. Generalized sub-lattice synchronization is observed for quadrilateral geometries while the equilateral triangle is zero-lag synchronized. Generalized zero-lag synchronization, without the limitation of precisely matched delays, opens possibilities for advanced multi-user communication protocols.

3.
Phys Rev Lett ; 104(11): 114102, 2010 Mar 19.
Article in English | MEDLINE | ID: mdl-20366480

ABSTRACT

Zero-lag synchronization (ZLS) between chaotic units, which do not have self-feedback or a relay unit connecting them, is experimentally demonstrated for two mutually coupled chaotic semiconductor lasers. The mechanism is based on two mutual coupling delay times with certain allowed integer ratios, whereas for a single mutual delay time ZLS cannot be achieved. This mechanism is also found numerically for mutually coupled chaotic maps where its stability is analyzed using the Schur-Cohn theorem for the roots of polynomials. The symmetry of the polynomials allows only specific integer ratios for ZLS. In addition, we present a general argument for ZLS when several mutual coupling delay times are present.

4.
Phys Rev Lett ; 103(2): 024102, 2009 Jul 10.
Article in English | MEDLINE | ID: mdl-19659208

ABSTRACT

The fluctuating intensity of a chaotic semiconductor laser is used for generating random sequences at rates up to 12.5 Gbits/s. The conversion of the fluctuating intensity to a random bit sequence can be implemented in either software or hardware and the overall rate of generation is much faster than any previously reported random number generator based on a physical mechanism. The generator's simplicity, robustness, and insensitivity to control parameters should enable its application to tasks of secure communication and calculation procedures requiring ultrahigh-speed generation of random bit sequences.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(2 Pt 2): 025204, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18850883

ABSTRACT

Semiconductor lasers with optical feedback have chaotically pulsating output behavior. When two similar chaotic lasers are optically coupled, they can become synchronized in their optical fluctuations. Here we show that the synchronization is not only in the amplitude and in the timing of the pulses but that the short pulses are also phase coherent with each other. This is true even when the lasers are separated by distances much larger than their coherence length.

SELECTION OF CITATIONS
SEARCH DETAIL
...