Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 10(13): 1647-54, 2010 Jul 07.
Article in English | MEDLINE | ID: mdl-20556268

ABSTRACT

In comprehensive two-dimensional gas chromatography (GC x GC), a modulator is placed at the juncture between two separation columns to focus and re-inject eluting mixture components, thereby enhancing the resolution and the selectivity of analytes. As part of an effort to develop a microGC x microGC prototype, in this report we present the design, fabrication, thermal operation, and initial testing of a two-stage microscale thermal modulator (microTM). The microTM contains two sequential serpentine Pyrex-on-Si microchannels (stages) that cryogenically trap analytes eluting from the first-dimension column and thermally inject them into the second-dimension column in a rapid, programmable manner. For each modulation cycle (typically 5 s for cooling with refrigeration work of 200 J and 100 ms for heating at 10 W), the microTM is kept approximately at -50 degrees C by a solid-state thermoelectric cooling unit placed within a few tens of micrometres of the device, and heated to 250 degrees C at 2800 degrees C s(-1) by integrated resistive microheaters and then cooled back to -50 degrees C at 250 degrees C s(-1). Thermal crosstalk between the two stages is less than 9%. A lumped heat transfer model is used to analyze the device design with respect to the rates of heating and cooling, power dissipation, and inter-stage thermal crosstalk as a function of Pyrex-membrane thickness, air-gap depth, and stage separation distance. Experimental results are in agreement with trends predicted by the model. Preliminary tests using a conventional capillary column interfaced to the microTM demonstrate the capability for enhanced sensitivity and resolution as well as the modulation of a mixture of alkanes.


Subject(s)
Chromatography, Gas/instrumentation , Heating/instrumentation , Microfluidic Analytical Techniques/instrumentation , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Miniaturization , Models, Theoretical
2.
Anal Chem ; 79(7): 2911-7, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17311465

ABSTRACT

Columns were fabricated in silicon substrates by deep reactive-ion etching. The channels were sealed with a glass wafer anodically bonded to the silicon surface. Heaters and temperature sensors were fabricated on the back side of each column chip. A microcontroller-based temperature controller was used with a PC for temperature programming. Temperature programming, with channel lengths of 3.0 and 0.25 m, is described. The 3.0-m-long channel was fabricated on a 3.2 cmx3.2 cm chip. Four columns were fabricated on a standard 4-in. silicon wafer. The 0.25-m-long channel was fabricated on a 1.1 cmx1.1 cm chip, and approximately 40 columns could be fabricated on a 4-in. wafer. All columns were coated with a nonpolar poly(dimethylsiloxanes) stationary phase. A static coating procedure was employed. The 3.0-m-long column generated about 12000 theoretical plates, and the 0.25-m-long channel generated about 1000 plates at optimal carrier gas velocity. Linear temperature ramps as high as 1000 degrees C/min when temperature programmed from 30 to 200 degrees C were obtained with the shorter column. With the 0.25-m-long column, normal alkanes from n-C5 through n-C15 were eluted in less than 12 s using a temperature ramp rate of 1000 degrees C/min. Temperature uniformity over the column chip surface was measured with infrared imaging. A variation of about 2 degrees C was obtained for the 3.0-m-long channel. Retention time reproducibility with temperature programming typically ranged from +/-0.15% to +/-1.5%. Design of the columns and the temperature controller are discussed. Performance data are presented for the different columns lengths.


Subject(s)
Heating/instrumentation , Silicon/chemistry , Temperature , Chromatography, Gas/instrumentation , Chromatography, Gas/methods , Electrodes , Equipment Design , Heating/methods , Sensitivity and Specificity , Time Factors
3.
Anal Chem ; 78(19): 6765-73, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-17007495

ABSTRACT

A microcountercurrent flame photometric detector (microcc-FPD) was adapted and optimized for ultrafast gas chromatographic (GC) separation and detection of organophosphor (OP) and organosulfur (OS) compounds on short chromatographic columns. Air and hydrogen are introduced to the microcc-FPD from opposite directions, creating a hydrogen-rich flame. In this microcc-FPD, combustion takes place between the burner tips without touching them. The separation between the tips and the flame reduces heat loss from the flame to the surrounding environment, resulting in low hydrogen consumption and a compact flame. The microcc-FPD is capable of detecting very narrow (13 ms) chromatographic peaks. An ultrafast GC separation of a group of six OP and OS compounds is achieved within less than 5 s using fast temperature programming of a 0.5-m-long microbore column. Very fast separations are also demonstrated on a 1-m-long microfabricated column consisting of 150-microm-wide, 240-microm-deep channels, etched in a 1.9-cm square silicon chip, covered with a Pyrex wafer, and statically coated with dimethyl polysiloxane. With a hydrogen flow rate of 10 mL/min, the detection limit for OP is 12 pg of P/s and 3 ng of S/s for OS compounds at a signal-to-noise ratio of 2. The coupling of a microfabricated column and a miniature FPD is an important step toward the development of a miniaturized GC-FPD capable of ultrafast detection of low levels of OP and OS compounds.

4.
Anal Chem ; 78(8): 2623-30, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16615772

ABSTRACT

A procedure is described for the preparation of high-performance etched silicon columns for gas chromatography. Rectangular channels, 150 mum wide by 240 mum deep are fabricated in silicon substrates by gas-phase reactive ion etching. A 0.1-0.2-mum-thick film of dimethyl polysiloxane stationary phase is deposited on the channel walls by filling the channel with a dilute solution in 1:1 n-pentane and dichloromethane and pumping away the solvent. A thermally activated cross-linking agent is used for in situ cross-linking. A 3-m-long microfabricated column generated approximately 12 500 theoretical plates at optimal operating conditions using air as carrier gas. A kinetic model for the efficiency of rectangular cross-section columns is used to evaluate column performance. Results indicate an additional source of gas-phase dispersion beyond longitudinal diffusion and nonequilibrium effects, probably resulting from numerous turns in the gas flow path through the channel. The columns are thermally stable to at least 180 degrees C using air carrier gas. Temperature programming is demonstrated for the boiling point range from n-C5 to n-C12. A 3.0-m-long column heated at 10 degrees C/min obtains a peak capacity of over 100 peaks with a resolution of 1.18 and a separation time of approximately 500 s. With a 0.25-m-long column heated at 30 degrees C/min, a peak capacity of 28 peaks is obtained with a separation time of 150 s. Applications are shown for the analysis of air-phase petroleum hydrocarbons and the high-speed analysis of chemical warfare agent and explosive markers.


Subject(s)
Air Pollutants/analysis , Chromatography, Gas/methods , Silicon/chemistry , Solvents/chemistry , Chemical Warfare Agents/analysis , Chromatography, Gas/instrumentation , Cross-Linking Reagents/chemistry , Dimethylpolysiloxanes/chemistry , Explosive Agents/analysis , Hydrocarbons/analysis , Methylene Chloride/chemistry , Pentanes/chemistry , Petroleum/analysis , Reproducibility of Results , Sensitivity and Specificity , Temperature , Time Factors
5.
Anal Chem ; 77(23): 7563-71, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16316163

ABSTRACT

A 3.0-m-long, 150-microm-wide, 240-microm-deep channel etched in a 3.2-cm-square silicon chip, covered with a Pyrex wafer, and coated with a dimethyl polysiloxane stationary phase is used for the GC separation of volatile organic compounds. The column, which generates approximately 5500 theoretical plates, is temperature-programmed in a conventional convection oven. The column is connected through a heated transfer line to a microfabricated differential mobility spectrometer. The spectrometer incorporates a 63Ni source for atmospheric-pressure chemical ionization of the analytes. Nitrogen or air transport gas (flow 300 cm(3)/min) drives the analyte ions through the cell. The spectrometer operates with an asymmetric radio frequency (RF) electric field between a pair of electrodes in the detector cell. During each radio frequency cycle, the ion mobility alternates between a high-field and a low-field value (differential mobility). Ions oscillate between the electrodes, and only ions with an appropriate differential mobility reach a pair of biased collectors at the downstream end of the cell. A compensation voltage applied to one of the RF electrodes is scanned to allow ions with different differential mobilities to pass through the cell without being annihilated at the RF electrodes. A unique feature of the device is that both positive and negative ions are detected from a single experiment. The combined microfabricated column and detector is evaluated for the analysis of volatile organic compounds with a variety of functionalities.


Subject(s)
Chromatography, Gas/instrumentation , Chromatography, Gas/methods , Organic Chemicals/chemistry , Silicon/chemistry , Temperature , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...