Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 243
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(22)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38857173

ABSTRACT

The software for chemical interaction networks (SCINE) project aims at pushing the frontier of quantum chemical calculations on molecular structures to a new level. While calculations on individual structures as well as on simple relations between them have become routine in chemistry, new developments have pushed the frontier in the field to high-throughput calculations. Chemical relations may be created by a search for specific molecular properties in a molecular design attempt, or they can be defined by a set of elementary reaction steps that form a chemical reaction network. The software modules of SCINE have been designed to facilitate such studies. The features of the modules are (i) general applicability of the applied methodologies ranging from electronic structure (no restriction to specific elements of the periodic table) to microkinetic modeling (with little restrictions on molecularity), full modularity so that SCINE modules can also be applied as stand-alone programs or be exchanged for external software packages that fulfill a similar purpose (to increase options for computational campaigns and to provide alternatives in case of tasks that are hard or impossible to accomplish with certain programs), (ii) high stability and autonomous operations so that control and steering by an operator are as easy as possible, and (iii) easy embedding into complex heterogeneous environments for molecular structures taken individually or in the context of a reaction network. A graphical user interface unites all modules and ensures interoperability. All components of the software have been made available as open source and free of charge.

2.
Nat Commun ; 15(1): 3680, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693117

ABSTRACT

Autonomous reaction network exploration algorithms offer a systematic approach to explore mechanisms of complex chemical processes. However, the resulting reaction networks are so vast that an exploration of all potentially accessible intermediates is computationally too demanding. This renders brute-force explorations unfeasible, while explorations with completely pre-defined intermediates or hard-wired chemical constraints, such as element-specific coordination numbers, are not flexible enough for complex chemical systems. Here, we introduce a STEERING WHEEL to guide an otherwise unbiased automated exploration. The STEERING WHEEL algorithm is intuitive, generally applicable, and enables one to focus on specific regions of an emerging network. It also allows for guiding automated data generation in the context of mechanism exploration, catalyst design, and other chemical optimization challenges. The algorithm is demonstrated for reaction mechanism elucidation of transition metal catalysts. We highlight how to explore catalytic cycles in a systematic and reproducible way. The exploration objectives are fully adjustable, allowing one to harness the STEERING WHEEL for both structure-specific (accurate) calculations as well as for broad high-throughput screening of possible reaction intermediates.

3.
J Phys Chem A ; 128(22): 4532-4547, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38787736

ABSTRACT

Exploring large chemical reaction networks with automated exploration approaches and accurate quantum chemical methods can require prohibitively large computational resources. Here, we present an automated exploration approach that focuses on the kinetically relevant part of the reaction network by interweaving (i) large-scale exploration of chemical reactions, (ii) identification of kinetically relevant parts of the reaction network through microkinetic modeling, (iii) quantification and propagation of uncertainties, and (iv) reaction network refinement. Such an uncertainty-aware exploration of kinetically relevant parts of a reaction network with automated accuracy improvement has not been demonstrated before in a fully quantum mechanical approach. Uncertainties are identified by local or global sensitivity analysis. The network is refined in a rolling fashion during the exploration. Moreover, the uncertainties are considered during kinetically steering of a rolling reaction network exploration. We demonstrate our approach for Eschenmoser-Claisen rearrangement reactions. The sensitivity analysis identifies that only a small number of reactions and compounds are essential for describing the kinetics reliably, resulting in efficient explorations without sacrificing accuracy and without requiring prior knowledge about the chemistry unfolding.

4.
Chimia (Aarau) ; 78(4): 215-221, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38676612

ABSTRACT

Many complex chemical problems encoded in terms of physics-based models become computationally intractable for traditional numerical approaches due to their unfavorable scaling with increasing molecular size. Tensor decomposition techniques can overcome such challenges by decomposing unattainably large numerical representations of chemical problems into smaller, tractable ones. In the first two decades of this century, algorithms based on such tensor factorizations have become state-of-the-art methods in various branches of computational chemistry, ranging from molecular quantum dynamics to electronic structure theory and machine learning. Here, we consider the role that tensor decomposition schemes have played in expanding the scope of computational chemistry. We relate some of the most prominent methods to their common underlying tensor network formalisms, providing a unified perspective on leading tensor-based approaches in chemistry and materials science.

5.
J Phys Chem A ; 128(16): 3047-3048, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660939
6.
J Am Chem Soc ; 146(3): 1957-1966, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38264790

ABSTRACT

Nitrene transfer reactions catalyzed by heme proteins have broad potential for the stereoselective formation of carbon-nitrogen bonds. However, competition between productive nitrene transfer and the undesirable reduction of nitrene precursors limits the broad implementation of such biocatalytic methods. Here, we investigated the reduction of azides by the model heme protein myoglobin to gain mechanistic insights into the factors that control the fate of key reaction intermediates. In this system, the reaction proceeds via a proposed nitrene intermediate that is rapidly reduced and protonated to give a reactive ferrous amide species, which we characterized by UV/vis and Mössbauer spectroscopies, quantum mechanical calculations, and X-ray crystallography. Rate-limiting protonation of the ferrous amide to produce the corresponding amine is the final step in the catalytic cycle. These findings contribute to our understanding of the heme protein-catalyzed reduction of azides and provide a guide for future enzyme engineering campaigns to create more efficient nitrene transferases. Moreover, harnessing the reduction reaction in a chemoenzymatic cascade provided a potentially practical route to substituted pyrroles.

7.
J Comput Chem ; 45(11): 761-776, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38124290

ABSTRACT

Structure and function in nanoscale atomistic assemblies are tightly coupled, and every atom with its specific position and even every electron will have a decisive effect on the electronic structure, and hence, on the molecular properties. Molecular simulations of nanoscopic atomistic structures therefore require accurately resolved three-dimensional input structures. If extracted from experiment, these structures often suffer from severe uncertainties, of which the lack of information on hydrogen atoms is a prominent example. Hence, experimental structures require careful review and curation, which is a time-consuming and error-prone process. Here, we present a fast and robust protocol for the automated structure analysis and pH-consistent protonation, in short, ASAP. For biomolecules as a target, the ASAP protocol integrates sequence analysis and error assessment of a given input structure. ASAP allows for p K a prediction from reference data through Gaussian process regression including uncertainty estimation and connects to system-focused atomistic modeling described in Brunken and Reiher (J. Chem. Theory Comput. 16, 2020, 1646). Although focused on biomolecules, ASAP can be extended to other nanoscopic objects, because most of its design elements rely on a general graph-based foundation guaranteeing transferability. The modular character of the underlying pipeline supports different degrees of automation, which allows for (i) efficient feedback loops for human-machine interaction with a low entrance barrier and for (ii) integration into autonomous procedures such as automated force field parametrizations. This facilitates fast switching of the pH-state through on-the-fly system-focused reparametrization during a molecular simulation at virtually no extra computational cost.

8.
Chimia (Aarau) ; 77(3): 139-143, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-38047817

ABSTRACT

In this minireview, we overview a computational pipeline developed within the framework of NCCR Catalysis that can be used to successfully reproduce the enantiomeric ratios of homogeneous catalytic reactions. At the core of this pipeline is the SCINE Molassembler module, a graph-based software that provides algorithms for molecular construction of all periodic table elements. With this pipeline, we are able to simultaneously functionalizenand generate ensembles of transition state conformers, which permits facile exploration of the influencenof various substituents on the overall enantiomeric ratio. This allows preconceived back-of-the-envelope designnmodels to be tested and subsequently refined by providing quick and reliable access to energetically low-lyingntransition states, which represents a key step in undertaking in silico catalyst optimization.

9.
J Chem Theory Comput ; 19(24): 9329-9343, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38060309

ABSTRACT

We present a novel formulation of the vibrational density matrix renormalization group (vDMRG) algorithm tailored to strongly anharmonic molecules described by general, high-dimensional model representations of potential energy surfaces. For this purpose, we extend the vDMRG framework to support vibrational Hamiltonians expressed in the so-called n-mode second-quantization formalism. The resulting n-mode vDMRG method offers full flexibility with respect to both the functional form of the PES and the choice of the single-particle basis set. We leverage this framework to apply, for the first time, vDMRG based on an anharmonic modal basis set optimized with the vibrational self-consistent field algorithm on an on-the-fly constructed PES. We also extend the n-mode vDMRG framework to include excited-state-targeting algorithms in order to efficiently calculate anharmonic transition frequencies. We demonstrate the capabilities of our novel n-mode vDMRG framework for methyloxirane, a challenging molecule with 24 coupled vibrational modes.

10.
J Phys Chem A ; 127(42): 8943-8954, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37831620

ABSTRACT

We present a symmetry projection technique for enforcing rotational and parity symmetries in nuclear-electronic Hartree-Fock wave functions, which treat electrons and nuclei on equal footing. The molecular Hamiltonian obeys rotational and parity inversion symmetries, which are, however, broken by expanding in Gaussian basis sets that are fixed in space. We generate a trial wave function with the correct symmetry properties by projecting the wave function onto representations of the three-dimensional rotation group, i.e., the special orthogonal group in three dimensions SO(3). As a consequence, the wave function becomes an eigenfunction of the angular momentum operator which (i) eliminates the contamination of the ground-state wave function by highly excited rotational states arising from the broken rotational symmetry and (ii) enables the targeting of specific rotational states of the molecule. We demonstrate the efficiency of the symmetry projection technique by calculating the energies of the low-lying rotational states of the H2 and H3+ molecules.

11.
J Am Chem Soc ; 145(34): 18920-18930, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37496164

ABSTRACT

Understanding the dynamics of reactive mixtures still challenges both experiments and theory. A relevant example can be found in the chemistry of molecular metal-oxide nanoclusters, also known as polyoxometalates. The high number of species potentially involved, the interconnectivity of the reaction network, and the precise control of the pH and concentrations needed in the synthesis of such species make the theoretical/computational treatment of such processes cumbersome. This work addresses this issue relying on a unique combination of recently developed computational methods that tackle the construction, kinetic simulation, and analysis of complex chemical reaction networks. By using the Bell-Evans-Polanyi approximation for estimating activation energies, and an accurate and robust linear scaling for correcting the computed pKa values, we report herein multi-time-scale kinetic simulations for the self-assembly processes of polyoxotungstates that comprise 22 orders of magnitude, from tens of femtoseconds to months of reaction time. This very large time span was required to reproduce very fast processes such as the acid/base equilibria (at 10-12 s), relatively slow reactions such as the formation of key clusters such as the metatungstate (at 103 s), and the very slow assembly of the decatungstate (at 106 s). Analysis of the kinetic data and of the reaction network topology shed light onto the details of the main reaction mechanisms, which explains the origin of kinetic and thermodynamic control followed by the reaction. Simulations at alkaline pH fully reproduce experimental evidence since clusters do not form under those conditions.

12.
J Chem Theory Comput ; 19(12): 3509-3525, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37288932

ABSTRACT

Machine learning potentials (MLPs) trained on accurate quantum chemical data can retain the high accuracy, while inflicting little computational demands. On the downside, they need to be trained for each individual system. In recent years, a vast number of MLPs have been trained from scratch because learning additional data typically requires retraining on all data to not forget previously acquired knowledge. Additionally, most common structural descriptors of MLPs cannot represent efficiently a large number of different chemical elements. In this work, we tackle these problems by introducing element-embracing atom-centered symmetry functions (eeACSFs), which combine structural properties and element information from the periodic table. These eeACSFs are key for our development of a lifelong machine learning potential (lMLP). Uncertainty quantification can be exploited to transgress a fixed, pretrained MLP to arrive at a continuously adapting lMLP, because a predefined level of accuracy can be ensured. To extend the applicability of an lMLP to new systems, we apply continual learning strategies to enable autonomous and on-the-fly training on a continuous stream of new data. For the training of deep neural networks, we propose the continual resilient (CoRe) optimizer and incremental learning strategies relying on rehearsal of data, regularization of parameters, and the architecture of the model.

13.
Digit Discov ; 2(3): 663-673, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37312681

ABSTRACT

Data-driven synthesis planning has seen remarkable successes in recent years by virtue of modern approaches of artificial intelligence that efficiently exploit vast databases with experimental data on chemical reactions. However, this success story is intimately connected to the availability of existing experimental data. It may well occur in retrosynthetic and synthesis design tasks that predictions in individual steps of a reaction cascade are affected by large uncertainties. In such cases, it will, in general, not be easily possible to provide missing data from autonomously conducted experiments on demand. However, first-principles calculations can, in principle, provide missing data to enhance the confidence of an individual prediction or for model retraining. Here, we demonstrate the feasibility of such an ansatz and examine resource requirements for conducting autonomous first-principles calculations on demand.

14.
Chembiochem ; 24(13): e202300120, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37151197

ABSTRACT

Molecular biology and biochemistry interpret microscopic processes in the living world in terms of molecular structures and their interactions, which are quantum mechanical by their very nature. Whereas the theoretical foundations of these interactions are well established, the computational solution of the relevant quantum mechanical equations is very hard. However, much of molecular function in biology can be understood in terms of classical mechanics, where the interactions of electrons and nuclei have been mapped onto effective classical surrogate potentials that model the interaction of atoms or even larger entities. The simple mathematical structure of these potentials offers huge computational advantages; however, this comes at the cost that all quantum correlations and the rigorous many-particle nature of the interactions are omitted. In this work, we discuss how quantum computation may advance the practical usefulness of the quantum foundations of molecular biology by offering computational advantages for simulations of biomolecules. We not only discuss typical quantum mechanical problems of the electronic structure of biomolecules in this context, but also consider the dominating classical problems (such as protein folding and drug design) as well as data-driven approaches of bioinformatics and the degree to which they might become amenable to quantum simulation and quantum computation.


Subject(s)
Computing Methodologies , Molecular Dynamics Simulation , Quantum Theory , Molecular Biology , Molecular Structure
15.
J Chem Phys ; 158(8): 084803, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36859110

ABSTRACT

Quantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a significant amount of manual input and expertise, although most of this effort could be automated, which would alleviate the need for expertise in software and hardware accessibility. Here, we present the AutoRXN workflow, an automated workflow for exploratory high-throughput electronic structure calculations of molecular systems, in which (i) density functional theory methods are exploited to deliver minimum and transition-state structures and corresponding energies and properties, (ii) coupled cluster calculations are then launched for optimized structures to provide more accurate energy and property estimates, and (iii) multi-reference diagnostics are evaluated to back check the coupled cluster results and subject them to automated multi-configurational calculations for potential multi-configurational cases. All calculations are carried out in a cloud environment and support massive computational campaigns. Key features of all components of the AutoRXN workflow are autonomy, stability, and minimum operator interference. We highlight the AutoRXN workflow with the example of an autonomous reaction mechanism exploration of the mode of action of a homogeneous catalyst for the asymmetric reduction of ketones.

16.
J Phys Chem Lett ; 14(8): 2112-2118, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36802629

ABSTRACT

The accuracy of reaction energy profiles calculated with multiconfigurational electronic structure methods and corrected by multireference perturbation theory depends crucially on consistent active orbital spaces selected along the reaction path. However, it has been challenging to choose molecular orbitals that can be considered corresponding in different molecular structures. Here, we demonstrate how active orbital spaces can be selected consistently along reaction coordinates in a fully automatized way. The approach requires no structure interpolation between reactants and products. Instead, it emerges from a synergy of the Direct Orbital Selection orbital mapping ansatz combined with our fully automated active space selection algorithm autoCAS. We demonstrate our algorithm for the potential energy profile of the homolytic carbon-carbon bond dissociation and rotation around the double bond of 1-pentene in the electronic ground state. However, our algorithm also applies to electronically excited Born-Oppenheimer surfaces.

17.
J Chem Phys ; 158(5): 054118, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36754821

ABSTRACT

Semi-empirical quantum chemical approaches are known to compromise accuracy for the feasibility of calculations on huge molecules. However, the need for ultrafast calculations in interactive quantum mechanical studies, high-throughput virtual screening, and data-driven machine learning has shifted the emphasis toward calculation runtimes recently. This comes with new constraints for the software implementation as many fast calculations would suffer from a large overhead of the manual setup and other procedures that are comparatively fast when studying a single molecular structure, but which become prohibitively slow for high-throughput demands. In this work, we discuss the effect of various well-established semi-empirical approximations on calculation speed and relate this to data transfer rates from the raw-data source computer to the results of the visualization front end. For the former, we consider desktop computers, local high performance computing, and remote cloud services in order to elucidate the effect on interactive calculations, for web and cloud interfaces in local applications, and in world-wide interactive virtual sessions. The models discussed in this work have been implemented into our open-source software SCINE Sparrow.

18.
J Chem Theory Comput ; 19(3): 856-873, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36701300

ABSTRACT

This work presents a general framework for deriving exact and approximate Newton self-consistent field (SCF) orbital optimization algorithms by leveraging concepts borrowed from differential geometry. Within this framework, we extend the augmented Roothaan-Hall (ARH) algorithm to unrestricted electronic and nuclear-electronic calculations. We demonstrate that ARH yields an excellent compromise between stability and computational cost for SCF problems that are hard to converge with conventional first-order optimization strategies. In the electronic case, we show that ARH overcomes the slow convergence of orbitals in strongly correlated molecules with the example of several iron-sulfur clusters. For nuclear-electronic calculations, ARH significantly enhances the convergence already for small molecules, as demonstrated for a series of protonated water clusters.

19.
J Chem Inf Model ; 63(1): 147-160, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36515968

ABSTRACT

While the field of first-principles explorations into chemical reaction space has been continuously growing, the development of strategies for analyzing resulting chemical reaction networks (CRNs) is lagging behind. A CRN consists of compounds linked by reactions. Analyzing how these compounds are transformed into one another based on kinetic modeling is a nontrivial task. Here, we present the graph-optimization-driven algorithm and program Pathfinder to allow for such an analysis of a CRN. The CRN for this work has been obtained with our open-source Chemoton reaction network exploration software. Chemoton probes reactive combinations of compounds for elementary steps and sorts them into reactions. By encoding these reactions of the CRN as a graph consisting of compound and reaction vertices and adding information about activation barriers as well as required reagents to the edges of the graph yields a complete graph-theoretical representation of the CRN. Since the probabilities of the formation of compounds depend on the starting conditions, the consumption of any compound during a reaction must be accounted for to reflect the availability of reagents. To account for this, we introduce compound costs to reflect compound availability. Simultaneously, the determined compound costs rank the compounds in the CRN in terms of their probability to be formed. This ranking then allows us to probe easily accessible compounds in the CRN first for further explorations into yet unexplored terrain. We first illustrate the working principle on an abstract small CRN. Afterward, Pathfinder is demonstrated in the example of the disproportionation of iodine with water and the comproportionation of iodic acid and hydrogen iodide. Both processes are analyzed within the same CRN, which we construct with our autonomous first-principles CRN exploration software Chemoton [Unsleber, J. P.; J. Chem. Theory Comput. 2022, 18, 5393-5409] guided by Pathfinder.


Subject(s)
Algorithms , Software , Probability
20.
J Chem Theory Comput ; 18(11): 6670-6689, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36218328

ABSTRACT

In this work, we explore the quantum chemical foundations of descriptors for molecular similarity. Such descriptors are key for traversing chemical compound space with machine learning. Our focus is on the Coulomb matrix and on the smooth overlap of atomic positions (SOAP). We adopt a basic framework that allows us to connect both descriptors to electronic structure theory. This framework enables us to then define two new descriptors that are more closely related to electronic structure theory, which we call Coulomb lists and smooth overlap of electron densities (SOED). By investigating their usefulness as molecular similarity descriptors, we gain new insights into how and why Coulomb matrix and SOAP work. Moreover, Coulomb lists avoid the somewhat mysterious diagonalization step of the Coulomb matrix and might provide a direct means to extract subsystem information that can be compared across Born-Oppenheimer surfaces of varying dimension. For the electron density, we derive the necessary formalism to create the SOED measure in close analogy to SOAP. Because this formalism is more involved than that of SOAP, we review the essential theory as well as introduce a set of approximations that eventually allow us to work with SOED in terms of the same implementation available for the evaluation of SOAP. We focus our analysis on elementary reaction steps, where transition state structures are more similar to either reactant or product structures than the latter two are with respect to one another. The prediction of electronic energies of transition state structures can, however, be more difficult than that of stable intermediates due to multi-configurational effects. The question arises to what extent molecular similarity descriptors rooted in electronic structure theory can resolve these intricate effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...