Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 211(5): 804-815, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37436030

ABSTRACT

Because of the growing numbers of immunocompromised patients, the incidence of life-threatening fungal infections caused by Candida albicans and Aspergillus fumigatus is increasing. We have recently identified enolase 1 (Eno1) from A. fumigatus as an immune evasion protein. Eno1 is a fungal moonlighting protein that mediates adhesion and invasion of human cells and also immune evasion through complement inactivation. We now show that soluble Eno1 has immunostimulatory activity. We observed that Eno1 from both C. albicans and A. fumigatus directly binds to the surface of lymphocytes, preferentially human and mouse B cells. Functionally, Eno1 upregulated CD86 expression on B cells and induced proliferation. Although the receptor for fungal Eno1 on B lymphocytes is still unknown, the comparison of B cells from wild-type and MyD88-deficient mice showed that B cell activation by Eno1 required MyD88 signaling. With respect to infection biology, we noted that mouse B cells stimulated by Eno1 secreted IgM and IgG2b. These Igs bound C. albicans hyphae in vitro, suggesting that Eno1-induced Ab secretion might contribute to protection from invasive fungal disease in vivo. Eno1 also triggered the release of proinflammatory cytokines from monocytes, particularly IL-6, which is a potent activator of B cells. Together, our data shed new light on the role of secreted Eno1 in infections with C. albicans and A. fumigatus. Eno1 secretion by these pathogenic microbes appears to be a double-edged sword by supporting fungal pathogenicity while triggering (antifungal) immunity.


Subject(s)
Aspergillus fumigatus , Candida albicans , Phosphopyruvate Hydratase , Animals , Humans , Mice , Aspergillus fumigatus/enzymology , Aspergillus fumigatus/metabolism , Candida albicans/enzymology , Candida albicans/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Monocytes/metabolism , Monocytes/microbiology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Phosphopyruvate Hydratase/metabolism , B-Lymphocytes/metabolism , B-Lymphocytes/microbiology
3.
Mol Immunol ; 93: 266-277, 2018 01.
Article in English | MEDLINE | ID: mdl-28860090

ABSTRACT

Candida albicans the most frequently isolated clinical fungal pathogen can cause local as well as systemic and life-threatening infections particularly in immune-compromised individuals. A better and more detailed understanding how C. albicans evades human immune attack is therefore needed for identifying fungal immune-evasive proteins and develop new therapies. Here, we identified Pra1, the pH-regulated C. albicans antigen as a hierarchical complement inhibitor that targets C3, the central human complement component. Pra1 cleaved C3 at a unique site and further inhibited effector function of the activation fragments. The newly formed C3a-like peptide lacked the C-terminal arginine residue needed for C3a-receptor binding and activation. Moreover, Pra1 also blocked C3a-like antifungal activity as shown in survival assays, and the C3b-like molecule formed by Pra1 was degraded by the host protease Factor I. Pra1 also bound to C3a and C3b generated by human convertases and blocked their effector functions, like C3a antifungal activity shown by fungal survival, blocked C3a binding to human C3a receptor-expressing HEK cells, activation of Fura2-AM loaded cells, intracellular Ca2+ signaling, IL-8 release, C3b deposition, as well as opsonophagocytosis and killing by human neutrophils. Thus, upon infection C. albicans uses Pra1 to destroy C3 and to disrupt host complement attack. In conclusion, candida Pra1 represents the first fungal C3-cleaving protease identified and functions as a fungal master regulator of innate immunity and as a central fungal immune-escape protein.


Subject(s)
Candida albicans/enzymology , Complement C3/antagonists & inhibitors , Fungal Proteins/physiology , Amino Acid Sequence , Binding, Competitive , Calcium Signaling/drug effects , Candida albicans/drug effects , Candida albicans/immunology , Cell Line , Complement C3/immunology , Complement C3/metabolism , Complement C3/pharmacology , Complement C3a/antagonists & inhibitors , Complement C3a/pharmacology , Complement C3b/antagonists & inhibitors , Complement C3b/pharmacology , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/pharmacology , HEK293 Cells , Humans , Interleukin-8/metabolism , Neutrophils/drug effects , Neutrophils/physiology , Opsonin Proteins/immunology , Peptide Fragments/metabolism , Phagocytosis/drug effects , Protease Inhibitors/pharmacology , Proteolysis , Receptors, Complement/antagonists & inhibitors , Receptors, Complement/metabolism , Virulence/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...