Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ann N Y Acad Sci ; 1043: 533-44, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16037276

ABSTRACT

The aging extracellular matrix is characterized by an age-related increase in insolubilization, yellowing, and stiffening, all of which can be mimicked by the Maillard reaction in vitro. These phenomena are accelerated in metabolic diseases such as diabetes and end-stage renal disease, which have in common with physiological aging the accumulation of various glycation products and cross-links. Eight years ago we concluded that the evidence favored oxidative cross-linking in experimental diabetes [Monnier, V.M. et al. 1996. The mechanism of collagen cross-linking in diabetes: a puzzle nearing completion. Diabetes 45(Suppl. 3): 67-72] and proposed a major role for a putative non-UV active cross-link derived from glucose. Below, we provide an update of the field that leads to the conclusion that, while oxidation might be important for Maillard reaction-mediated cross-linking via Strecker degradation and allysine formation, the single most important collagen cross-link known to date in diabetes and aging is glucosepane, a lysyl-arginine cross-link that forms under nonoxidative conditions.


Subject(s)
Aging/physiology , Diabetes Mellitus/physiopathology , Extracellular Matrix/physiology , Animals , Cross-Linking Reagents , Disease Models, Animal , Glycation End Products, Advanced/metabolism , Humans , Maillard Reaction
2.
J Biol Chem ; 280(13): 12310-5, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15677467

ABSTRACT

The extracellular matrix in most tissues is characterized by progressive age-related stiffening and loss of proteolytic digestibility that are accelerated in diabetes and can be duplicated by the nonenzymatic reaction of reducing sugars and extracellular matrix proteins. However, most cross-links of the Maillard reaction described so far are present in quantities too low to account for these changes. Here we have determined in human skin and glomerular basement membrane (GBM) collagen the levels of the recently discovered lysine-arginine cross-links derived from glucose, methylglyoxal, glyoxal, and 3-deoxyglucosone, i.e. glucosepane, MODIC, GODIC, and DOGDIC, respectively. Insoluble preparations of skin collagen (n = 110) and glomerular basement membrane (GBM, n = 28) were enzymatically digested, and levels were measured by isotope dilution technique using liquid chromatography/mass spectrometry. In skin, all cross-links increased with age (p < 0.0001) except DOGDIC (p = 0.34). In nondiabetic controls, levels at 90 years were 2000, 30, and 15 pmol/mg for glucosepane, MODIC, and GODIC, respectively. Diabetes, but not renal failure, increased glucosepane to 5000 pmol/mg (p < 0.0001), and for all others, increased it to <60 pmol/mg (p < 0.01). In GBMs, glucosepane reached up to 500 pmol/mg of collagen and was increased in diabetes (p < 0.0001) but not old age. In conclusion, glucosepane is the single major cross-link of the senescent extracellular matrix discovered so far, accounting for up to >120 mole% of triple helical collagen modification in diabetes. Its presence in high quantities may contribute to a number of structural and cell matrix dysfunctions observed in aging and diabetes.


Subject(s)
Azepines/chemistry , Azepines/metabolism , Collagen/metabolism , Diabetes Mellitus, Type 2/metabolism , Extracellular Matrix/metabolism , Lysine/analogs & derivatives , Lysine/chemistry , Lysine/metabolism , Skin/metabolism , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Arginine/chemistry , Basement Membrane/metabolism , Cellular Senescence , Chromatography, High Pressure Liquid , Collagen/chemistry , Cross-Linking Reagents/pharmacology , Female , Humans , Imidazoles/metabolism , Kidney Failure, Chronic/metabolism , Kidney Glomerulus/metabolism , Male , Middle Aged , Models, Chemical , Protein Binding , Regression Analysis , Renal Insufficiency/metabolism , Time Factors
3.
Diabetes ; 54(2): 517-26, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15677510

ABSTRACT

We tested the hypothesis that green tea prevents diabetes-related tissue dysfunctions attributable to oxidation. Diabetic rats were treated daily with tap water, vitamins C and E, or fresh Japanese green tea extract. After 12 months, body weights were decreased, whereas glycated lysine in aorta, tendon, and plasma were increased by diabetes (P < 0.001) but unaffected by treatment. Erythrocyte glutathione and plasma hydroperoxides were improved by the vitamins (P < 0.05) and green tea (P < 0.001). Retinal superoxide production, acellular capillaries, and pericyte ghosts were increased by diabetes (P < 0.001) and improved by green tea and the vitamins (P variable). Lens crystallin fluorescence at 370/440 nm was ameliorated by green tea (P < 0.05) but not the vitamins. Marginal effects on nephropathy parameters were noted. However, suppressed renal mitochondrial NADH-linked ADP-dependent and dinitrophenol-dependent respiration and complex III activity were improved by green tea (P variable). Green tea also suppressed the methylglyoxal hydroimidazolone immunostaining of a 28-kDa mitochondrial protein. Surprising, glycoxidation in tendon, aorta, and plasma was either worsened or not significantly improved by the vitamins and green tea. Glucosepane cross-links were increased by diabetes (P < 0.001), and green tea worsened total cross-linking. In conclusion, green tea and antioxidant vitamins improved several diabetes-related cellular dysfunctions but worsened matrix glycoxidation in selected tissues, suggesting that antioxidant treatment tilts the balance from oxidative to carbonyl stress in the extracellular compartment.


Subject(s)
Antioxidants/therapeutic use , Ascorbic Acid/therapeutic use , Camellia sinensis , Collagen/metabolism , Diabetes Mellitus, Experimental/physiopathology , Diabetic Nephropathies/pathology , Diabetic Retinopathy/drug therapy , Phytotherapy , Tea , Vitamin E/therapeutic use , Animals , Blood Glucose/metabolism , Body Weight , Collagen/chemistry , Collagen/drug effects , Cross-Linking Reagents , Diabetes Mellitus, Experimental/pathology , Feeding Behavior/drug effects , Glycation End Products, Advanced/metabolism , In Vitro Techniques , Male , Mitochondria/pathology , Oxygen Consumption/drug effects , Rats , Rats, Inbred Lew
4.
Carbohydr Res ; 339(9): 1609-18, 2004 Jun 22.
Article in English | MEDLINE | ID: mdl-15183735

ABSTRACT

Covalently cross-linked proteins are among the major modifications caused by the advanced Maillard reaction. In the present study, the formation pathway of the dideoxyosone N6-(2,3-dihydroxy-5,6-dioxohexyl)-L-lysine is shown. To elucidate the formation of this glucose-derived dideoxyosone D-lactose (O-beta-D-galp-(1-->4)-D-glcp) and D-glucose-6-phosphate were incubated with lysine in the presence of the trapping reagent o-phenylenediamine (OPD). Synthesis and unequivocal structural characterization were reported for the quinoxalines of the dideoxyosones N6-(5,6-dihydroxy-2,3-dioxohexyl)-L-lysine and N6-(2,3-dihydroxy-4,5-dioxohexyl)-L-lysine, respectively. Additionally, dicarbonyl compounds derived from D-erythrose, D-glycero-D-mannoheptose, and D-gluco-L-talooctose were synthesized and structurally characterized.


Subject(s)
Cross-Linking Reagents/chemistry , Glucose-6-Phosphate/chemistry , Lactose/chemistry , Lysine/chemistry , Maillard Reaction , Carbohydrate Sequence , Chromatography, High Pressure Liquid , Glycation End Products, Advanced/chemistry , Hexoses/chemistry , Hexoses/isolation & purification , Lysine/analogs & derivatives , Magnetic Resonance Spectroscopy , Mannose/analogs & derivatives , Mannose/chemistry , Mass Spectrometry , Molecular Structure , Phenylenediamines/chemistry , Quantum Theory , Quinoxalines/chemical synthesis , Quinoxalines/chemistry , Spectrometry, Mass, Electrospray Ionization , Tetroses/chemistry
5.
Carbohydr Res ; 339(3): 483-91, 2004 Feb 25.
Article in English | MEDLINE | ID: mdl-15013385

ABSTRACT

Covalently cross-linked proteins are among the major modifications caused by the advanced Maillard reaction. So far, the chemical nature of these aggregates is largely unknown. L-dehydroascorbic acid (DHA, 5), the oxidation product of L-ascorbic acid (vitamin C), is known as a potent glycation agent. Identification is reported for the lysine-arginine cross-links N6-[2-[(4-amino-4-carboxybutyl)amino]-5-(2-hydroxyethyl)-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (9), N6-[2-[(4-amino-4-carboxybutyl)amino]-5-(1,2-dihydroxyethyl)-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (11), and N6-[2-[(4-amino-4-carboxybutyl)amino]-5-[(1S,2S)-1,2,3-trihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (13). The formation pathways could be established starting from dehydroascorbic acid (5), the degradation products 1,3,4-trihydroxybutan-2-one (7, L-erythrulose), 3,4-dihydroxy-2-oxobutanal (10, L-threosone), and L-threo-pentos-2-ulose (12, L-xylosone) were proven as precursors of the lysine-arginine cross-links 9, 11, and 13. Products 9 and 11 were synthesized starting from DHA 5, compound N6-[2-[(4-amino-4-carboxybutyl)amino]-5-[(1S,2R)-1,2,3-trihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (16) via the precursor D-erythro-pentos-2-ulose (15). The present study revealed that the modification of lysine and arginine side chains by DHA 5 is a complex process and could involve a number of reactive carbonyl species.


Subject(s)
Arginine/chemistry , Dehydroascorbic Acid/chemistry , Lysine/chemistry , Cross-Linking Reagents/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Tetroses/chemistry
6.
Carbohydr Res ; 339(3): 705-14, 2004 Feb 25.
Article in English | MEDLINE | ID: mdl-15013409

ABSTRACT

Besides the formation of the aminotriazine N6-[4-(3-amino-1,2,4-triazin-5-yl)-2,3-dihydroxybutyl]-L-lysine, the reaction of [1-13C]D-glucose with lysine and aminoguanidine leads to the generation of 6-[2-([[amino(imino)methyl]hydrazono]methyl)pyridinium-1-yl]-L-norleucine (14-13C1). The dideoxyosone N6-(2,3-dihydroxy-5,6-dioxohexyl)-L-lysine was shown to be a precursor in the formation of 14-13C1, which proceeds via the reactive carbonyl intermediate 6-(2-formylpyridinium-1-yl)-L-norleucine (13-13C1). In order to study the reactivity of 13-13C1, the model compound 1-butyl-2-formylpyridinium (18) was prepared in a two-step procedure starting from 2-pyridinemethanol. The reaction of the pyridinium-carbaldehyde 18 with L-lysine yielded the Strecker analogous degradation product 2-(aminomethyl)-1-butylpyridinium and another compound, which was shown to be as 1-butyl-2-[(2-oxopiperidin-3-ylidene)methyl]pyridinium. Reaction of 18 with the C-H acidic 4-hydroxy-5-methylfuran-3(2H)-one leads to the formation of the condensation product 1-butyl-2-[hydroxy-(4-hydroxy-5-methyl-3-oxofuran-2(3H)-ylidene)methyl]-pyridinium.


Subject(s)
Aldehydes/chemical synthesis , Hexoses/chemistry , Lysine/chemistry , Maillard Reaction , Pyridinium Compounds/chemical synthesis , Aldehydes/chemistry , Carbon Isotopes , Isotope Labeling , Magnetic Resonance Spectroscopy , Molecular Structure , Pyridinium Compounds/chemistry
7.
J Agric Food Chem ; 51(16): 4810-8, 2003 Jul 30.
Article in English | MEDLINE | ID: mdl-14705917

ABSTRACT

Covalently cross-linked proteins are among the major modifications caused by the advanced Maillard reaction. So far, the chemical nature of these aggregates is largely unknown. Investigations are reported on the isolation of 6-[2-[[(4S)-4-amino-4-carboxybutyl]amino]-6,7-dihydroxy-6,7-dihydroimidazo[4,5-b]azepin-4(5H)-yl]-L-norleucine (10) and N-acetyl-6-[(6R,7R)-2-[[4-(acetylamino)-4-carboxybutyl]amino]-6,7,8a-trihydroxy-6,7,8,8a-tetrahydroimidazo[4,5-b]azepin-4(5H)-yl]-L-norleucine (12) formed by oxidation of the major Maillard cross-link glucosepane 1. Independent synthesis and unequivocal structural characterization are given for 10 and 12. Spiro cross-links, representing a new class of glycoxidation products, were obtained by dehydrogenation of the amino imidazolinimine compounds N6-[2-[[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-5-[(2S,3R)-2,3,4-trihydroxybutyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysinate (DOGDIC 2) and N6-[2-[[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-5-[(2S)-2,3-dihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysinate (DOPDIC 3). These new oxidation products were synthesized, and their unambiguous structural elucidation proved the formation of the spiro imidazolimine structures N6-[(7R,8S)-2-[[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-8-hydroxy-7-(hydroxymethyl)-6-oxa-1,3-diazaspiro[4.4]non-1-en-4-ylidene]-L-lysinate (16), N6-(8R,9S)-2-[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-8,9-dihydroxy-6-oxa-1,3-diazaspiro[4.5]dec-1-en-4-ylidene)-L-lysinate (19), and N6-[(8S)-2-[(4-amino-4-carboxybutyl)amino]-8-hydroxy-6-oxa-1,3-diazaspiro[4.4]non-1-en-4-ylidene]-L-lysinate (18), respectively. It was shown that reaction of the imidazolinone 15 led to the formation of spiro imidazolones, structurally analogous to 16 and 19.


Subject(s)
Azepines/chemistry , Imines/chemistry , Lysine/analogs & derivatives , Lysine/chemistry , Spiro Compounds/chemistry , Cross-Linking Reagents , Food Analysis , Glycation End Products, Advanced/chemistry , Imidazoles/chemistry , Maillard Reaction , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...