Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 21(13)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645937

ABSTRACT

To advance pre-clinical vascular drug research, in vitro assays are needed that closely mimic the process of angiogenesis in vivo. Such assays should combine physiological relevant culture conditions with robustness and scalability to enable drug screening. We developed a perfused 3D angiogenesis assay that includes endothelial cells (ECs) from induced pluripotent stem cells (iPSC) and assessed its performance and suitability for anti-angiogenic drug screening. Angiogenic sprouting was compared with primary ECs and showed that the microvessels from iPSC-EC exhibit similar sprouting behavior, including tip cell formation, directional sprouting and lumen formation. Inhibition with sunitinib, a clinically used vascular endothelial growth factor (VEGF) receptor type 2 inhibitor, and 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), a transient glycolysis inhibitor, both significantly reduced the sprouting of both iPSC-ECs and primary ECs, supporting that both cell types show VEGF gradient-driven angiogenic sprouting. The assay performance was quantified for sunitinib, yielding a minimal signal window of 11 and Z-factor of at least 0.75, both meeting the criteria to be used as screening assay. In conclusion, we have developed a robust and scalable assay that includes physiological relevant culture conditions and is amenable to screening of anti-angiogenic compounds.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Biological Assay/methods , Drug Evaluation, Preclinical/methods , Endothelium/drug effects , Induced Pluripotent Stem Cells/drug effects , Neovascularization, Pathologic/drug therapy , Neovascularization, Physiologic/drug effects , Cell Culture Techniques/methods , Cell Differentiation/drug effects , Cells, Cultured , Endothelium/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Microvessels/drug effects , Microvessels/metabolism , Neovascularization, Pathologic/metabolism , Vascular Endothelial Growth Factor A/metabolism
2.
J Vis Exp ; (153)2019 11 06.
Article in English | MEDLINE | ID: mdl-31762444

ABSTRACT

Pre-clinical drug research of vascular diseases requires in vitro models of vasculature that are amendable to high-throughput screening. However, current in vitro screening models that have sufficient throughput only have limited physiological relevance, which hinders the translation of findings from in vitro to in vivo. On the other hand, microfluidic cell culture platforms have shown unparalleled physiological relevancy in vitro, but often lack the required throughput, scalability and standardization. We demonstrate a robust platform to study angiogenesis of endothelial cells derived from human induced pluripotent stem cells (iPSC-ECs) in a physiological relevant cellular microenvironment, including perfusion and gradients. The iPSC-ECs are cultured as 40 perfused 3D microvessels against a patterned collagen-1 scaffold. Upon the application of a gradient of angiogenic factors, important hallmarks of angiogenesis can be studied, including the differentiation into tip- and stalk cell and the formation of perfusable lumen. Perfusion with fluorescent tracer dyes enables the study of permeability during and after anastomosis of the angiogenic sprouts. In conclusion, this method shows the feasibility of iPSC-derived ECs in a standardized and scalable 3D angiogenic assay that combines physiological relevant culture conditions in a platform that has the required robustness and scalability to be integrated within the drug screening infrastructure.


Subject(s)
Endothelial Cells/physiology , Induced Pluripotent Stem Cells/physiology , Neovascularization, Physiologic/physiology , Biological Assay , Cell Differentiation , Cells, Cultured , Cellular Microenvironment , Humans , Microvessels
3.
Proc Natl Acad Sci U S A ; 115(13): E2997-E3006, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29531030

ABSTRACT

Inherited retinal degeneration (RD) is a devastating and currently untreatable neurodegenerative condition that leads to loss of photoreceptor cells and blindness. The vast genetic heterogeneity of RD, the lack of "druggable" targets, and the access-limiting blood-retinal barrier (BRB) present major hurdles toward effective therapy development. Here, we address these challenges (i) by targeting cGMP (cyclic guanosine- 3',5'-monophosphate) signaling, a disease driver common to different types of RD, and (ii) by combining inhibitory cGMP analogs with a nanosized liposomal drug delivery system designed to facilitate transport across the BRB. Based on a screen of several cGMP analogs we identified an inhibitory cGMP analog that interferes with activation of photoreceptor cell death pathways. Moreover, we found liposomal encapsulation of the analog to achieve efficient drug targeting to the neuroretina. This pharmacological treatment markedly preserved in vivo retinal function and counteracted photoreceptor degeneration in three different in vivo RD models. Taken together, we show that a defined class of compounds for RD treatment in combination with an innovative drug delivery method may enable a single type of treatment to address genetically divergent RD-type diseases.


Subject(s)
Blood-Retinal Barrier/metabolism , Cyclic GMP/analogs & derivatives , Cyclic GMP/administration & dosage , Disease Models, Animal , Drug Delivery Systems , Retinal Degeneration/drug therapy , Animals , Blood-Retinal Barrier/drug effects , Cyclic GMP/pharmacology , Cyclic GMP-Dependent Protein Kinases/metabolism , Liposomes , Mice , Photoreceptor Cells/metabolism , Retina/drug effects , Retina/metabolism , Retinal Degeneration/metabolism , Signal Transduction/drug effects
4.
Drug Discov Today Technol ; 20: 59-69, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27986226

ABSTRACT

The blood-brain barrier (BBB) represents a major obstacle for the delivery and development of drugs curing brain pathologies. However, this biological barrier presents numerous endogenous specialized transport systems that can be exploited by engineered nanoparticles to enable drug delivery to the brain. In particular, conjugation of glutathione (GSH) onto PEGylated liposomes (G-Technology®) showed to safely enhance delivery of encapsulated drugs to the brain. Yet, understanding of the mechanism of action remains limited and full mechanistic understanding will aid in the further optimization of the technology. In order to elucidate the mechanism of brain targeting by GSH-PEG liposomes, we here demonstrate that the in vivo delivery of liposomal ribavirin is increased in brain extracellular fluid according to the extent of GSH conjugation onto the liposomes. In vitro, using the hCMEC/D3 human cerebral microvascular endothelial (CMEC) cell line, as well as primary bovine and porcine CMEC (and in contrast to non-brain derived endothelial and epithelial cells), we show that liposomal uptake occurs through the process of endocytosis and that the brain-specific uptake is also glutathione conjugation-dependent. Interestingly, the uptake mechanism is an active process that is temperature-, time- and dose-dependent. Finally, early endocytosis events rely on cytoskeleton remodeling, as well as dynamin- and clathrin-dependent endocytosis pathways. Overall, our data demonstrate that the glutathione-dependent uptake mechanism of the G-Technology involves a specific endocytosis pathway indicative of a receptor-mediated mechanism, and supports the benefit of this drug delivery technology for the treatment of devastating brain diseases.


Subject(s)
Antiviral Agents/administration & dosage , Brain/metabolism , Glutathione/administration & dosage , Polyethylene Glycols/administration & dosage , Ribavirin/administration & dosage , Animals , Antiviral Agents/pharmacokinetics , Biological Transport , Cattle , Cell Line , Cells, Cultured , Endothelial Cells/metabolism , Glutathione/chemistry , Glutathione/pharmacokinetics , HEK293 Cells , Humans , Liposomes , Male , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Rats, Wistar , Ribavirin/pharmacokinetics , Swine
5.
FASEB J ; 30(8): 2662-72, 2016 08.
Article in English | MEDLINE | ID: mdl-27118674

ABSTRACT

Brain endothelial cells constitute the major cellular element of the highly specialized blood-brain barrier (BBB) and thereby contribute to CNS homeostasis by restricting entry of circulating leukocytes and blood-borne molecules into the CNS. Therefore, compromised function of brain endothelial cells has serious consequences for BBB integrity. This has been associated with early events in the pathogenesis of several disorders that affect the CNS, such as multiple sclerosis, HIV-associated neurologic disorder, and stroke. Recent studies demonstrate that brain endothelial microRNAs play critical roles in the regulation of BBB function under normal and neuroinflammatory conditions. This review will focus on emerging evidence that indicates that brain endothelial microRNAs regulate barrier function and orchestrate various phases of the neuroinflammatory response, including endothelial activation in response to cytokines as well as restoration of inflamed endothelium into a quiescent state. In particular, we discuss novel microRNA regulatory mechanisms and their contribution to cellular interactions at the neurovascular unit that influence the overall function of the BBB in health and during neuroinflammation.-Lopez-Ramirez, M. A., Reijerkerk, A., de Vries, H. E., Romero, I. A. Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation.


Subject(s)
Blood-Brain Barrier/physiology , Brain/blood supply , Endothelium, Vascular/physiology , Inflammation/metabolism , MicroRNAs/metabolism , Gene Expression Regulation/physiology , Humans , MicroRNAs/genetics
6.
Contrast Media Mol Imaging ; 10(2): 111-21, 2015.
Article in English | MEDLINE | ID: mdl-24753465

ABSTRACT

Upregulation of intercellular adhesion molecule 1 (ICAM-1) is an early event in lesion formation in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Monitoring its expression may provide a biomarker for early disease activity and allow validation of anti-inflammatory interventions. Our objective was therefore to explore whether ICAM-1 expression can be visualized in vivo during EAE with magnetic resonance imaging (MRI) using micron-sized particles of iron oxide (MPIO), and to compare accumulation profiles of targeted and untargeted MPIO, and a gadolinium-containing agent. Targeted αICAM-1-MPIO/untargeted IgG-MPIO were injected at two model-characteristic phases of EAE (in myelin oligodendrocyte glycoprotein35-55 -immunized C57BL/6 J mice), that is, at the peak of the acute phase (14 ± 1 days post-immunization) and during the chronic phase (26 ± 1 days post-immunization), followed by T2 *-weighted MRI. Blood-brain barrier (BBB) permeability was measured using gadobutrol-enhanced MRI. Cerebellar microvessels were analyzed for ICAM-1 mRNA expression using quantitative PCR (qPCR). ICAM-1 and iron oxide presence was examined with immunohistochemistry (IHC). During EAE, ICAM-1 was expressed by brain endothelial cells, macrophages and T-cells as shown with qPCR and (fluorescent) IHC. EAE animals injected with αICAM-1-MPIO showed MRI hypointensities, particularly in the subarachnoid space. αICAM-1-MPIO presence did not differ between the phases of EAE and was not associated with BBB dysfunction. αICAM-1-MPIO were associated with endothelial cells or cells located at the luminal side of blood vessels. In conclusion, ICAM-1 expression can be visualized with in vivo molecular MRI during EAE, and provides an early tracer of disease activity.


Subject(s)
Cerebellum , Encephalomyelitis, Autoimmune, Experimental , Endothelial Cells , Intercellular Adhesion Molecule-1/biosynthesis , Magnetic Resonance Angiography/methods , Multiple Sclerosis , Animals , Cerebellum/blood supply , Cerebellum/diagnostic imaging , Cerebellum/metabolism , Cerebrovascular Circulation , Contrast Media/pharmacology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging , Encephalomyelitis, Autoimmune, Experimental/metabolism , Endothelial Cells/diagnostic imaging , Endothelial Cells/metabolism , Ferric Compounds/pharmacology , Mice , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/metabolism , Radiography
7.
Acta Neuropathol ; 128(5): 691-703, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25149081

ABSTRACT

Multiple sclerosis (MS) lesions are characterized by the presence of activated astrocytes, which are thought to actively take part in propagating lesion progression by secreting pro-inflammatory mediators. Conversely, reactive astrocytes may exert disease-dampening effects through the production of trophic factors and anti-inflammatory mediators. Astrocytic control of the blood-brain barrier (BBB) is crucial for normal brain homeostasis and BBB disruption is a well-established early event in MS lesion development. Here, we set out to unravel potential protective effects of reactive astrocytes on BBB function under neuroinflammatory conditions as seen in MS, where we focus on the role of the brain morphogen retinoic acid (RA). Immunohistochemical analysis revealed that retinaldehyde dehydrogenase 2 (RALDH2), a key enzyme for RA synthesis, is highly expressed by reactive astrocytes throughout white matter lesions compared to control and normal appearing white matter. In vitro modeling of reactive astrocytes resulted in increased expression of RALDH2, enhanced RA synthesis, and a protective role for astrocyte-derived RA on BBB function during inflammation-induced barrier loss. Furthermore, RA induces endothelial immune quiescence and decreases monocyte adhesion under inflammatory conditions. Finally, we demonstrated that RA attenuated oxidative stress in inflamed endothelial cells, through activation of the antioxidant transcription factor nuclear factor E2 related factor 2. In summary, RA synthesis by reactive astrocytes represents an endogenous protective response to neuroinflammation, possibly aimed at protecting the BBB against inflammatory insult. A better understanding of RA signaling in MS pathophysiology may lead to the discovery of novel targets to halt disease progression.


Subject(s)
Astrocytes/drug effects , Blood-Brain Barrier/physiopathology , Brain/pathology , Multiple Sclerosis/pathology , Tretinoin/pharmacology , Adult , Aged , Aged, 80 and over , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase 1 Family , Astrocytes/metabolism , Autopsy , Cells, Cultured , Cytokines/metabolism , Endothelial Cells/drug effects , Endothelial Cells/physiology , Female , Glial Fibrillary Acidic Protein/metabolism , HEK293 Cells , Humans , Male , Middle Aged , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism , Time Factors
8.
J Neuroimmunol ; 274(1-2): 96-101, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25037177

ABSTRACT

Methylprednisolone (MP) pulses are the mainstay for relapse therapy in multiple sclerosis (MS). To improve the efficacy of treatment and reduce the side effects of MP, a long circulating brain-targeted formulation was developed; glutathione polyethylene glycol (PEG)ylated liposomal MP (2B3-201). Here we investigate the efficacy of 2B3-201 in murine myelin oligodendrocyte induced experimental autoimmune encephalomyelitis (MOG-EAE), an animal model mimicking inflammatory features and neurodegenerative aspects of MS. After disease onset, mice were randomized to receive either saline, three injections of free MP (high dose MP, 100mg/kg i.v.), two injections of free MP (low dose MP, 10mg/kg; i.v.), or two injections of 2B3-201 (10mg/kg i.v.). Treatment with a low dose of 2B3-201 significantly reduced the severity of EAE as compared to saline control, similar to treatment with high dose free MP, while a low dose of free MP was not effective. In a histological analysis of the spinal cord, treatment with 2B3-201 significantly decreased T cell as well as macrophage/microglia infiltration in the CNS by about 50%. Moreover, application of a low dose of 2B3-201 or a high dose of free MP reduced the amount of astrocyte activation as well as the extent of axonal loss and also demyelination in spinal cord lesions as compared to low dose MP or sham treatment. In summary, in the murine MOG-EAE model of MS, a glutathione PEGylated liposomal formulation of MP (2B3-201) is clinically and histologically as effective as free MP at one tenth of the dosage as well as at a lower application frequency and clearly more effective than the same dosage of free MP. These positive proof-of-concept efficacy studies warrant further development of 2B3-201 for the treatment of neuroinflammatory conditions such as MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Liposomes/pharmacology , Methylprednisolone/pharmacology , Myelin-Oligodendrocyte Glycoprotein/immunology , Animals , Astrocytes/drug effects , Astrocytes/immunology , Disease Models, Animal , Female , Liposomes/immunology , Macrophages/drug effects , Macrophages/immunology , Methylprednisolone/immunology , Mice , Mice, Inbred C57BL , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/immunology , Polyethylene Glycols/pharmacology , Spinal Cord/drug effects , Spinal Cord/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
9.
Invest Ophthalmol Vis Sci ; 55(4): 2788-94, 2014 Apr 28.
Article in English | MEDLINE | ID: mdl-24692123

ABSTRACT

PURPOSE: Ocular inflammation is associated with the loss of visual acuity and subsequent blindness. Since their development, glucocorticoids have been the mainstay of therapy for ocular inflammatory diseases. However, the clinical benefit is limited by side effects due to the chronic use and generally high dosage that is required for effective treatment. We have developed the G-Technology to provide a means for sustained drug delivery, increased drug half-life, and reduced bodily drug exposure. Glutathione PEGylated liposomal methylprednisolone (2B3-201) has been developed as treatment for neuroinflammatory conditions and was evaluated in ocular inflammation. METHODS: The efficacy of 2B3-201 was investigated in rats with experimental autoimmune uveitis (EAU). Rats received 10 mg/kg of 2B3-201 intravenously at disease onset and at peak of the disease. The same dose of free methylprednisolone served as control treatment. Clinical signs of ocular inflammation were assessed by slit-lamp and immunohistochemistry. RESULTS: Whereas free methylprednisolone was ineffective, two doses of 2B3-201 almost completely abolished clinical signs of EAU. This was corroborated further by immunohistochemical analyses of isolated eyes. Treatment with 2B3-201 significantly reduced the infiltration of inflammatory cells and subsequent destruction of the retina cell layers. CONCLUSIONS: In this study, we show that systemic treatment with 2B3-201, a glutathione PEGylated liposomal methylprednisolone formulation, resulted in a superior efficacy in rats with EAU. Altogether, our findings hold promise for the development of a safe and more convenient systemic treatment for uveitis.


Subject(s)
Autoimmune Diseases/drug therapy , Glutathione/administration & dosage , Methylprednisolone/administration & dosage , Uveitis/drug therapy , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Disease Models, Animal , Drug Combinations , Glucocorticoids/administration & dosage , Immunohistochemistry , Liposomes , Male , Rats , Rats, Inbred Lew , Treatment Outcome , Uveitis/immunology , Uveitis/pathology
10.
Glia ; 62(7): 1125-41, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24692237

ABSTRACT

To ensure efficient energy supply to the high demanding brain, nutrients are transported into brain cells via specific glucose (GLUT) and monocarboxylate transporters (MCT). Mitochondrial dysfunction and altered glucose metabolism are thought to play an important role in the progression of neurodegenerative diseases, including multiple sclerosis (MS). Here, we investigated the cellular localization of key GLUT and MCT proteins in human brain tissue of non-neurological controls and MS patients. We show that in control brain tissue GLUT and MCT proteins were abundantly expressed in a variety of central nervous system cells, particularly in microglia and endothelial cells. In active MS lesions, GLUTs and MCTs were highly expressed in infiltrating leukocytes and reactive astrocytes. Astrocytes manifest increased MCT1 staining and maintain GLUT expression in inactive lesions, whereas demyelinated axons exhibit significantly reduced GLUT3 and MCT2 immunoreactivity in inactive lesions. Finally, we demonstrated that the co-transcription factor peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α), an important protein involved in energy metabolism, is highly expressed in reactive astrocytes in active MS lesions. Overexpression of PGC-1α in astrocyte-like cells resulted in increased production of several GLUT and MCT proteins. In conclusion, we provide for the first time a comprehensive overview of key nutrient transporters in white matter brain samples. Moreover, our data demonstrate an altered expression of these nutrient transporters in MS brain tissue, including a marked reduction of axonal GLUT3 and MCT2 expression in chronic lesions, which may impede efficient nutrient supply to the hypoxic demyelinated axons thereby contributing to the ongoing neurodegeneration in MS.


Subject(s)
Brain/metabolism , Glutamate Plasma Membrane Transport Proteins/metabolism , Monocarboxylic Acid Transporters/metabolism , Multiple Sclerosis/metabolism , White Matter/metabolism , Adult , Aged , Aged, 80 and over , Astrocytes/metabolism , Astrocytes/pathology , Axons/metabolism , Axons/pathology , Brain/blood supply , Brain/pathology , Cell Line , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Glucose Transporter Type 3/metabolism , Humans , Leukocytes/metabolism , Leukocytes/pathology , Male , Microglia/metabolism , Microglia/pathology , Middle Aged , Multiple Sclerosis/pathology , Multiple Sclerosis, Chronic Progressive/metabolism , Multiple Sclerosis, Chronic Progressive/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Transcription Factors/metabolism , White Matter/blood supply , White Matter/pathology
11.
FASEB J ; 28(6): 2551-65, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24604078

ABSTRACT

Blood-brain barrier (BBB) dysfunction is a hallmark of neurological conditions such as multiple sclerosis (MS) and stroke. However, the molecular mechanisms underlying neurovascular dysfunction during BBB breakdown remain elusive. MicroRNAs (miRNAs) have recently emerged as key regulators of pathogenic responses, although their role in central nervous system (CNS) microvascular disorders is largely unknown. We have identified miR-155 as a critical miRNA in neuroinflammation at the BBB. miR-155 is expressed at the neurovascular unit of individuals with MS and of mice with experimental autoimmune encephalomyelitis (EAE). In mice, loss of miR-155 reduced CNS extravasation of systemic tracers, both in EAE and in an acute systemic inflammation model induced by lipopolysaccharide. In cultured human brain endothelium, miR-155 was strongly and rapidly upregulated by inflammatory cytokines. miR-155 up-regulation mimicked cytokine-induced alterations in junctional organization and permeability, whereas inhibition of endogenous miR-155 partially prevented a cytokine-induced increase in permeability. Furthermore, miR-155 modulated brain endothelial barrier function by targeting not only cell-cell complex molecules such as annexin-2 and claudin-1, but also focal adhesion components such as DOCK-1 and syntenin-1. We propose that brain endothelial miR-155 is a negative regulator of BBB function that may constitute a novel therapeutic target for CNS neuroinflammatory disorders.


Subject(s)
Blood-Brain Barrier/physiology , MicroRNAs/physiology , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Humans , Male , Mice , Multiple Sclerosis , Talin/biosynthesis , Transcriptome , Up-Regulation , Vinculin/biosynthesis
12.
J Drug Target ; 22(5): 460-7, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24524555

ABSTRACT

Partly due to poor blood-brain barrier drug penetration the treatment options for many brain diseases are limited. To safely enhance drug delivery to the brain, glutathione PEGylated liposomes (G-Technology®) were developed. In this study, in rats, we compared the pharmacokinetics and organ distribution of GSH-PEG liposomes using an autoquenched fluorescent tracer after intraperitoneal administration and intravenous administration. Although the appearance of liposomes in the circulation was much slower after intraperitoneal administration, comparable maximum levels of long circulating liposomes were found between 4 and 24 h after injection. Furthermore, 24 h after injection a similar tissue distribution was found. To investigate the effect of GSH coating on brain delivery in vitro uptake studies in rat brain endothelial cells (RBE4) and an in vivo brain microdialysis study in rats were used. Significantly more fluorescent tracer was found in RBE4 cell homogenates incubated with GSH-PEG liposomes compared to non-targeted PEG liposomes (1.8-fold, p < 0.001). In the microdialysis study 4-fold higher (p < 0.001) brain levels of fluorescent tracer were found after intravenous injection of GSH-PEG liposomes compared with PEG control liposomes. The results support further investigation into the versatility of GSH-PEG liposomes for enhanced drug delivery to the brain within a tolerable therapeutic window.


Subject(s)
Blood-Brain Barrier/drug effects , Drug Carriers/chemistry , Glutathione/chemistry , Polyethylene Glycols/chemistry , Animals , Blood-Brain Barrier/metabolism , Cell Line , Drug Carriers/administration & dosage , Drug Carriers/pharmacokinetics , Drug Stability , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Fluoresceins , Fluorescent Dyes , Glutathione/administration & dosage , Glutathione/pharmacokinetics , Injections, Intravenous , Injections, Spinal , Liposomes , Microdialysis , Particle Size , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/pharmacokinetics , Rats , Rats, Wistar , Tissue Distribution
13.
Acta Neuropathol ; 127(5): 699-711, 2014 May.
Article in English | MEDLINE | ID: mdl-24429546

ABSTRACT

The trafficking of cytotoxic CD8(+) T lymphocytes across the lining of the cerebral vasculature is key to the onset of the chronic neuro-inflammatory disorder multiple sclerosis. However, the mechanisms controlling their final transmigration across the brain endothelium remain unknown. Here, we describe that CD8(+) T lymphocyte trafficking into the brain is dependent on the activity of the brain endothelial adenosine triphosphate-binding cassette transporter P-glycoprotein. Silencing P-glycoprotein activity selectively reduced the trafficking of CD8(+) T cells across the brain endothelium in vitro as well as in vivo. In response to formation of the T cell-endothelial synapse, P-glycoprotein was found to regulate secretion of endothelial (C-C motif) ligand 2 (CCL2), a chemokine that mediates CD8(+) T cell migration in vitro. Notably, CCL2 levels were significantly enhanced in microvessels isolated from human multiple sclerosis lesions in comparison with non-neurological controls. Endothelial cell-specific elimination of CCL2 in mice subjected to experimental autoimmune encephalomyelitis also significantly diminished the accumulation of CD8(+) T cells compared to wild-type animals. Collectively, these results highlight a novel (patho)physiological role for P-glycoprotein in CD8(+) T cell trafficking into the central nervous system during neuro-inflammation and illustrate CCL2 secretion as a potential link in this mechanism.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/metabolism , Brain/immunology , CD8-Positive T-Lymphocytes/physiology , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Transendothelial and Transepithelial Migration/physiology , ATP Binding Cassette Transporter, Subfamily B/genetics , Animals , Blood-Brain Barrier/physiology , Brain/blood supply , Brain/pathology , CD4-Positive T-Lymphocytes/physiology , Cell Line , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Mice, Inbred C57BL , Mice, Knockout , Microvessels/pathology , Microvessels/physiopathology , Multiple Sclerosis/pathology , ATP-Binding Cassette Sub-Family B Member 4
14.
Acta Neuropathol ; 128(2): 267-77, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24356983

ABSTRACT

Multiple sclerosis (MS) is a chronic neuro-inflammatory disorder, which is marked by the invasion of the central nervous system by monocyte-derived macrophages and autoreactive T cells across the brain vasculature. Data from experimental animal models recently implied that the passage of leukocytes across the brain vasculature is preceded by their traversal across the blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus. The correlation between the presence of leukocytes in the CSF of patients suffering from MS and the number of inflammatory lesions as detected by magnetic resonance imaging suggests that inflammation at the choroid plexus contributes to the disease, although in a yet unknown fashion. We here provide first insights into the involvement of the choroid plexus in the onset and severity of the disease and in particular address the role of the tight junction protein claudin-3 (CLDN3) in this process. Detailed analysis of human post-mortem brain tissue revealed a selective loss of CLDN3 at the choroid plexus in MS patients compared to control tissues. Importantly, mice that lack CLDN3 have an impaired BCSFB and experience a more rapid onset and exacerbated clinical signs of experimental autoimmune encephalomyelitis, which coincides with enhanced levels of infiltrated leukocytes in their CSF. Together, this study highlights a profound role for the choroid plexus in the pathogenesis of multiple sclerosis, and implies that CLDN3 may be regarded as a crucial and novel determinant of BCSFB integrity.


Subject(s)
Choroid Plexus/physiopathology , Claudin-3/metabolism , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Multiple Sclerosis/physiopathology , Adult , Aged , Aged, 80 and over , Animals , Brain/blood supply , Brain/pathology , Brain/physiopathology , Choroid Plexus/pathology , Claudin-3/genetics , Disease Progression , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microvessels/pathology , Microvessels/physiopathology , Middle Aged , Multiple Sclerosis/pathology , Myelin-Oligodendrocyte Glycoprotein , Peptide Fragments , Severity of Illness Index
15.
J Neuroinflammation ; 10: 118, 2013 Sep 22.
Article in English | MEDLINE | ID: mdl-24053384

ABSTRACT

BACKGROUND: Autoimmunity to neuronal proteins occurs in several neurological syndromes, where cellular and humoral responses are directed to surface as well as intracellular antigens. Similar to myelin autoimmunity, pathogenic immune response to neuroaxonal components such as neurofilaments may contribute to neurodegeneration in multiple sclerosis. METHODS: We studied the immune response to the axonal protein neurofilament light (NF-L) in the experimental autoimmune encephalomyelitis animal model of multiple sclerosis. To examine the association between T cells and axonal damage, pathology studies were performed on NF-L immunized mice. The interaction of T cells and axons was analyzed by confocal microscopy of central nervous system tissues and T-cell and antibody responses to immunodominant epitopes identified in ABH (H2-Ag7) and SJL/J (H2-As) mice. These epitopes, algorithm-predicted peptides and encephalitogenic motifs within NF-L were screened for encephalitogenicity. RESULTS: Confocal microscopy revealed both CD4+ and CD8+ T cells alongside damaged axons in the lesions of NF-L immunized mice. CD4+ T cells dominated the areas of axonal injury in the dorsal column of spastic mice in which the expression of granzyme B and perforin was detected. Identified NF-L epitopes induced mild neurological signs similar to the observed with the NF-L protein, yet distinct from those characteristic of neurological disease induced with myelin oligodendrocyte glycoprotein. CONCLUSIONS: Our data suggest that CD4+ T cells are associated with spasticity, axonal damage and neurodegeneration in NF-L immunized mice. In addition, defined T-cell epitopes in the NF-L protein might be involved in the pathogenesis of the disease.


Subject(s)
Autoantigens/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Neurofilament Proteins/immunology , Spinal Cord/immunology , Spinal Cord/pathology , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Enzyme-Linked Immunosorbent Assay , Epitopes, T-Lymphocyte/immunology , Female , Immunohistochemistry , Male , Mice , Microscopy, Confocal , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes
16.
Glia ; 61(11): 1890-905, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24038577

ABSTRACT

Early events in multiple sclerosis (MS) lesion formation are loss of blood-brain barrier (BBB) integrity, immune cell trafficking into the central nervous system, and demyelination. To date, the molecular mechanisms underlying these pathogenic events are poorly understood. Heparin-binding epidermal growth factor (HB-EGF) is a trophic factor that is induced by inflammatory stimuli and has previously been shown to interact with tetraspanins (TSPs), a family of transmembrane proteins that are involved in cellular migration and adhesion. Given the known roles of TSPs and HB-EGF, we hypothesized that HB-EGF and TSPs may play a role in the processes that underlie MS lesion formation. We examined the expression of HB-EGF and the TSPs CD9 and CD81 in MS brain and found that HB-EGF was highly induced in reactive astrocytes in active lesions. TSPs were constitutively expressed throughout normal appearing white matter and control white matter. In contrast, CD9 was reduced in demyelinated lesions and increased on blood vessels in lesion areas. In vitro studies revealed that expression of HB-EGF and TSPs is regulated during inflammation. Importantly, blocking either HB-EGF or CD9 significantly reduced the migration of monocytes across brain endothelial cell monolayers. Moreover, blocking CD9 strongly enhanced the barrier function of the BBB in vitro. Together, we demonstrate that these molecules are likely implicated in processes that are highly relevant for MS lesion formation, and therefore, HB-EGF and TSPs are promising therapeutic targets.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Multiple Sclerosis/metabolism , Tetraspanin 29/metabolism , Adult , Aged , Aged, 80 and over , Brain/pathology , Cell Movement/physiology , Female , Heparin-binding EGF-like Growth Factor , Humans , Male , Membrane Proteins/metabolism , Middle Aged , Multiple Sclerosis/pathology
17.
J Neurosci ; 33(16): 6857-63, 2013 Apr 17.
Article in English | MEDLINE | ID: mdl-23595744

ABSTRACT

Blood-brain barrier (BBB) dysfunction is a major hallmark of many neurological diseases, including multiple sclerosis (MS). Using a genomics approach, we defined a microRNA signature that is diminished at the BBB of MS patients. In particular, miR-125a-5p is a key regulator of brain endothelial tightness and immune cell efflux. Our findings suggest that repair of a disturbed BBB through microRNAs may represent a novel avenue for effective treatment of MS.


Subject(s)
Blood-Brain Barrier/physiopathology , Brain/pathology , Endothelial Cells/physiology , Inflammation/pathology , MicroRNAs/metabolism , Multiple Sclerosis/pathology , Blood-Brain Barrier/drug effects , Cell Line, Transformed , Cytokines/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Gene Expression Regulation/drug effects , Genetic Vectors/physiology , Humans , MicroRNAs/genetics , RNA, Small Interfering/pharmacology , Transendothelial and Transepithelial Migration/drug effects , Transfection
18.
J Neurosci ; 33(4): 1660-71, 2013 Jan 23.
Article in English | MEDLINE | ID: mdl-23345238

ABSTRACT

The blood-brain barrier (BBB) is crucial in the maintenance of a controlled environment within the brain to safeguard optimal neuronal function. The endothelial cells (ECs) of the BBB possess specific properties that restrict the entry of cells and metabolites into the CNS. The specialized BBB endothelial phenotype is induced during neurovascular development by surrounding cells of the CNS. However, the molecular differentiation of the BBB endothelium remains poorly understood. Retinoic acid (RA) plays a crucial role in the brain during embryogenesis. Because radial glial cells supply the brain with RA during the developmental cascade and associate closely with the developing vasculature, we hypothesize that RA is important for the induction of BBB properties in brain ECs. Analysis of human postmortem fetal brain tissue shows that the enzyme mainly responsible for RA synthesis, retinaldehyde dehydrogenase, is expressed by radial glial cells. In addition, the most important receptor for RA-driven signaling in the CNS, RA-receptor ß (RARß), is markedly expressed by the developing brain vasculature. Our findings have been further corroborated by in vitro experiments showing RA- and RARß-dependent induction of different aspects of the brain EC barrier. Finally, pharmacologic inhibition of RAR activation during the differentiation of the murine BBB resulted in the leakage of a fluorescent tracer as well as serum proteins into the developing brain and reduced the expression levels of important BBB determinants. Together, our results point to an important role for RA in the induction of the BBB during human and mouse development.


Subject(s)
Blood-Brain Barrier/embryology , Blood-Brain Barrier/metabolism , Neuroglia/metabolism , Tretinoin/metabolism , Animals , Blotting, Western , Cell Differentiation/physiology , Cell Line , Endothelial Cells/cytology , Endothelial Cells/metabolism , Fetus , Gene Expression Regulation, Developmental , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Signal Transduction/physiology
19.
Acta Neuropathol ; 125(2): 231-43, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23073717

ABSTRACT

There is growing evidence that mitochondrial dysfunction and associated reactive oxygen species (ROS) formation contribute to neurodegenerative processes in multiple sclerosis (MS). Here, we investigated whether alterations in transcriptional regulators of key mitochondrial proteins underlie mitochondrial dysfunction in MS cortex and contribute to neuronal loss. Hereto, we analyzed the expression of mitochondrial transcriptional (co-)factors and proteins involved in mitochondrial redox balance regulation in normal-appearing grey matter (NAGM) samples of cingulate gyrus and/or frontal cortex from 15 MS patients and nine controls matched for age, gender and post-mortem interval. PGC-1α, a transcriptional co-activator and master regulator of mitochondrial function, was consistently and significantly decreased in pyramidal neurons in the deeper layers of MS cortex. Reduced PGC-1α levels coincided with reduced expression of oxidative phosphorylation subunits and a decrease in gene and protein expression of various mitochondrial antioxidants and uncoupling proteins (UCPs) 4 and 5. Short-hairpin RNA-mediated silencing of PGC-1α in a neuronal cell line confirmed that reduced levels of PGC-1α resulted in a decrease in transcription of OxPhos subunits, mitochondrial antioxidants and UCPs. Moreover, PGC-1α silencing resulted in a decreased mitochondrial membrane potential, increased ROS formation and enhanced susceptibility to ROS-induced cell death. Importantly, we found extensive neuronal loss in NAGM from cingulate gyrus and frontal cortex of MS patients, which significantly correlated with the extent of PGC-1α decrease. Taken together, our data indicate that reduced neuronal PGC-1α expression in MS cortex partly underlies mitochondrial dysfunction in MS grey matter and thereby contributes to neurodegeneration in MS cortex.


Subject(s)
Cerebral Cortex/pathology , Heat-Shock Proteins/physiology , Mitochondria/pathology , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Neurons/pathology , Transcription Factors/physiology , Adult , Aged , Aged, 80 and over , Blotting, Western , Cell Count , Down-Regulation , Female , Genetic Vectors , Gyrus Cinguli/pathology , Heat-Shock Proteins/biosynthesis , Heat-Shock Proteins/genetics , Humans , Immunohistochemistry , Lentivirus/genetics , Male , Middle Aged , Oxidation-Reduction , Oxidative Phosphorylation , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Pyramidal Cells/pathology , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Tissue Banks , Transcription Factors/biosynthesis , Transcription Factors/genetics
20.
Acta Neuropathol ; 124(3): 397-410, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22810490

ABSTRACT

Alterations in sphingolipid metabolism are described to contribute to various neurological disorders. We here determined the expression of enzymes involved in the sphingomyelin cycle and their products in postmortem brain tissue of multiple sclerosis (MS) patients. In parallel, we investigated the effect of the sphingosine-1 receptor agonist Fingolimod (Gilenya(®)) on sphingomyelin metabolism in reactive astrocytes and determined its functional consequences for the process of neuro-inflammation. Our results demonstrate that in active MS lesions, marked by large number of infiltrated immune cells, an altered expression of enzymes involved in the sphingomyelin cycle favors enhanced ceramide production. We identified reactive astrocytes as the primary cellular source of enhanced ceramide production in MS brain samples. Astrocytes isolated from MS lesions expressed enhanced mRNA levels of the ceramide-producing enzyme acid sphingomyelinase (ASM) compared to astrocytes isolated from control white matter. In addition, TNF-α treatment induced ASM mRNA and ceramide levels in astrocytes isolated from control white matter. Incubation of astrocytes with Fingolimod prior to TNF-α treatment reduced ceramide production and mRNA expression of ASM to control levels in astrocytes. Importantly, supernatants derived from reactive astrocytes treated with Fingolimod significantly reduced transendothelial monocyte migration. Overall, the present study demonstrates that reactive astrocytes represent a possible additional cellular target for Fingolimod in MS by directly reducing the production of pro-inflammatory lipids and limiting subsequent transendothelial leukocyte migration.


Subject(s)
Astrocytes/drug effects , Blood-Brain Barrier/drug effects , Ceramides/metabolism , Immunosuppressive Agents/pharmacology , Multiple Sclerosis/physiopathology , Propylene Glycols/pharmacology , Sphingosine/analogs & derivatives , Adult , Aged , Aged, 80 and over , Astrocytes/metabolism , Astrocytes/pathology , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiopathology , Cell Movement/drug effects , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Fingolimod Hydrochloride , Humans , Male , Middle Aged , Monocytes/drug effects , Monocytes/metabolism , Monocytes/pathology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Sphingomyelins/metabolism , Sphingosine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...