Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Antibodies (Basel) ; 12(1)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36810521

ABSTRACT

Monoclonal antibodies (mAbs) are highly efficacious therapeutics; however, due to their large, dynamic nature, structural perturbations and regional modifications are often difficult to study. Moreover, the homodimeric, symmetrical nature of mAbs makes it difficult to elucidate which heavy chain (HC)-light chain (LC) pairs are responsible for any structural changes, stability concerns, and/or site-specific modifications. Isotopic labeling is an attractive means for selectively incorporating atoms with known mass differences to enable identification/monitoring using techniques such as mass spectrometry (MS) and nuclear magnetic resonance (NMR). However, the isotopic incorporation of atoms into proteins is typically incomplete. Here we present a strategy for incorporating 13C-labeling of half antibodies using an Escherichia coli fermentation system. Unlike previous attempts to generate isotopically labeled mAbs, we provide an industry-relevant, high cell density process that yielded >99% 13C-incorporation using 13C-glucose and 13C-celtone. The isotopic incorporation was performed on a half antibody designed with knob-into-hole technology to enable assembly with its native (naturally abundant) counterpart to generate a hybrid bispecific (BsAb) molecule. This work is intended to provide a framework for producing full-length antibodies, of which half are isotopically labeled, in order to study the individual HC-LC pairs.

2.
Proc Natl Acad Sci U S A ; 110(32): E2987-96, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23882082

ABSTRACT

Binding of hepatocyte growth factor (HGF) to the receptor tyrosine kinase MET is implicated in the malignant process of multiple cancers, making disruption of this interaction a promising therapeutic strategy. However, targeting MET with bivalent antibodies can mimic HGF agonism via receptor dimerization. To address this limitation, we have developed onartuzumab, an Escherichia coli-derived, humanized, and affinity-matured monovalent monoclonal antibody against MET, generated using the knob-into-hole technology that enables the antibody to engage the receptor in a one-to-one fashion. Onartuzumab potently inhibits HGF binding and receptor phosphorylation and signaling and has antibody-like pharmacokinetics and antitumor activity. Biochemical data and a crystal structure of a ternary complex of onartuzumab antigen-binding fragment bound to a MET extracellular domain fragment, consisting of the MET Sema domain fused to the adjacent Plexins, Semaphorins, Integrins domain (MET Sema-PSI), and the HGF ß-chain demonstrate that onartuzumab acts specifically by blocking HGF α-chain (but not ß-chain) binding to MET. These data suggest a likely binding site of the HGF α-chain on MET, which when dimerized leads to MET signaling. Onartuzumab, therefore, represents the founding member of a class of therapeutic monovalent antibodies that overcomes limitations of antibody bivalency for targets impacted by antibody crosslinking.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal/pharmacology , Immunoglobulin Fab Fragments/pharmacology , Neoplasms/drug therapy , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Xenograft Model Antitumor Assays , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/genetics , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Design , Hepatocyte Growth Factor/chemistry , Hepatocyte Growth Factor/metabolism , Hepatocyte Growth Factor/pharmacology , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Nude , Mice, SCID , Mice, Transgenic , Models, Molecular , Molecular Sequence Data , Neoplasms/pathology , Protein Binding/drug effects , Protein Structure, Tertiary , Proto-Oncogene Proteins c-met/chemistry , Proto-Oncogene Proteins c-met/metabolism , Sequence Homology, Amino Acid
3.
Biotechnol Prog ; 29(4): 1050-8, 2013.
Article in English | MEDLINE | ID: mdl-23794499

ABSTRACT

Transient gene expression in mammalian cells allows for rapid production of recombinant proteins for research and preclinical studies. Here, we describe the development of a polyethylenimine (PEI) transient transfection system using an anti-apoptotic host cell line. The host cell line, referred to as the Double Knockout (DKO), was generated by deleting two pro-apoptotic factors, Bax and Bak, in a CHO-K1 cell line using zinc finger nuclease mediated gene disruption. Optimized DNA and PEI volumes for DKO transfections were 50% and 30% lower than CHO-K1, respectively. During transfection DKO cells produced relatively high levels of lactate, but this was mitigated by a temperature shift to 31°C which further enhanced productivity. DKO cells expressed ∼3- to 4-fold higher antibody titers than CHO-K1 cells. As evidence of their anti-apoptotic properties post-transfection, DKO cells maintained higher viability and had reduced levels of active caspase-3 compared to CHO-K1 cells. Nuclear plasmid DNA copy numbers and message levels were significantly elevated in DKO cells. Although DNA uptake levels, as early as 40 min post-transfection, were higher in DKO cells this was not due to differences in cell surface heparan sulfate (HS) or initial endocytosis mechanism as both cell types utilized caveolae- and clathrin-mediated endocytosis to internalize DNA:PEI complexes. These results suggest that the increased transfection efficiency and titers from DKO cells are attributed to their resistance to transfection-induced apoptosis and not differences in endocytosis mechanism.


Subject(s)
Apoptosis/genetics , DNA/genetics , Gene Expression/genetics , RNA, Messenger/genetics , Animals , CHO Cells , Cells, Cultured , Cricetulus , DNA/isolation & purification , RNA, Messenger/isolation & purification
4.
Biotechnol Bioeng ; 106(5): 751-63, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20564613

ABSTRACT

Removal of the core alpha1,6 fucose from the glycans in the Fc region of IgG1 antibodies has been demonstrated to improve antibody-dependent cellular cytotoxicity (ADCC) activity. In order to produce afucosylated antibodies using transient transfection, a FUT8 knockout (FUT8KO) cell line was generated in a CHO host cell line using the zinc finger nuclease technology. Transient transfection of DNA into mammalian cells using the cationic polymer, polyethylenimine (PEI), is commonly used for rapid generation of recombinant proteins. FUT8KO cells evaluated in PEI transfections yielded lower titers than parental CHO WT cells. FACS and HPLC analyses revealed that the FUT8KO cells had lower cell surface heparan sulfate (HS) levels than CHO WT. Removal of cell surface HS resulted in reduced uptake of PEI-transfected DNA (PEI:DNA) and lower transfection titers suggesting that PEI:DNA relies on HS for binding and cellular entry. The absence of cell surface HS did not severely impact transfections performed with cationic liposomes. We undertook two approaches to improve transient production of afucosylated antibodies. First, we evaluated transfection of FUT8KO cells with cationic liposomes, which were observed to be less dependent on HS levels for uptake. Transfection of FUT8KO cells using the cationic liposome, DMRIE-C, produced similar titers to CHO WT in both shake flask and large-scale 10 L bioreactors. The second approach was to engineer a cell line overexpressing exostosin-1 (EXT1), an enzyme responsible for HS chain elongation, to increase HS content. EXT1-FUT8KO and CHO WT cells produced comparable levels of antibody from PEI transfections.


Subject(s)
Antibodies, Monoclonal/biosynthesis , DNA/genetics , DNA/metabolism , Gene Expression , Transfection , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , CHO Cells , Cell Culture Techniques , Cricetinae , Cricetulus , Fucosyltransferases/deficiency , Gene Knockout Techniques , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
5.
Protein Expr Purif ; 72(2): 184-93, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20302942

ABSTRACT

Vascular endothelial growth factor (VEGF(165)) is a potent mitogen that induces angiogenesis and vascular permeability in vivo and has demonstrated potential in therapeutic applications for accelerating wound healing. An industrial production method that provides high yield as well as high purity, quality, and potency is needed. The process described in this report involves a bacterial expression system capable of producing approximately 9g of rhVEGF per liter of broth and a downstream purification process consisting of protein refolding and three chromatography steps prior to formulation of the drug substance. A high cell density (HCD) fed-batch fermentation process was used to produce rhVEGF in periplasmic inclusion bodies. The inclusion bodies are harvested from the cell lysate and subjected to a single-step protein solubilization and refolding operation to extract the rhVEGF for purification. Overall recovery yields observed during development, including refolding and chromatography, were 30+/-6%. Host cell impurities are consistently cleared below target levels at both laboratory and large-scale demonstrating process robustness. The structure of the refolded and purified rhVEGF was confirmed by mass spectrometry, N-terminal sequencing, and tryptic peptide mapping while product variants were analyzed by multiple HPLC assays. Biological activity was verified by the proliferation of human umbilical vein derived endothelial cells.


Subject(s)
Escherichia coli/genetics , Vascular Endothelial Growth Factor A/biosynthesis , Arginine/chemistry , Chromatography, High Pressure Liquid , Electrophoresis, Polyacrylamide Gel , Escherichia coli/chemistry , Escherichia coli/metabolism , Fermentation , Humans , Hydrogen-Ion Concentration , Inclusion Bodies/chemistry , Protein Folding , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Sepharose/analogs & derivatives , Sepharose/chemistry , Urea/chemistry , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/isolation & purification
6.
J Biol Chem ; 282(31): 22953-63, 2007 Aug 03.
Article in English | MEDLINE | ID: mdl-17562704

ABSTRACT

Using cationic liposomes to mediate gene delivery by transfection has the advantages of improved safety and simplicity of use over viral gene therapy. Understanding the mechanism by which cationic liposome:DNA complexes are internalized and delivered to the nucleus should help identify which transport steps might be manipulated in order to improve transfection efficiencies. We therefore examined the endocytosis and trafficking of two cationic liposomes, DMRIE-C and Lipofectamine LTX, in CHO cells. We found that DMRIE-C-transfected DNA is internalized via caveolae, while LTX-transfected DNA is internalized by clathrin-mediated endocytosis, with both pathways converging at the late endosome or lysosome. Inhibition of microtubule-dependent transport with nocodazole revealed that DMRIE-C:DNA complexes cannot enter the cytosol directly from caveosomes. Lysosomal degradation of transfected DNA has been proposed to be a major reason for poor transfection efficiency. However, in our system dominant negatives of both Rab7 and its effector RILP inhibited late endosome to lysosome transport of DNA complexes and LDL, but did not affect DNA delivery to the nucleus. This suggests that DNA is able to escape from late endosomes without traversing lysosomes and that caveosome to late endosome transport does not require Rab7 function. Lysosomal inhibition with chloroquine likewise had no effect on transfection product titers. These data suggest that DMRIE-C and LTX transfection complexes are endocytosed by separate pathways that converge at the late endosome or lysosome, but that blocking lysosomal traffic does not improve transfection product yields, identifying late endosome/lysosome to nuclear delivery as a step for future study.


Subject(s)
Caveolae/metabolism , Cell Nucleus/metabolism , DNA/chemistry , Endocytosis , Microtubules/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Antimalarials/pharmacology , Antineoplastic Agents/pharmacology , CHO Cells , Chloroquine/pharmacology , Cricetinae , Cricetulus , DNA/metabolism , Endosomes/metabolism , Humans , Lysosomes/metabolism , Nocodazole/pharmacology , rab7 GTP-Binding Proteins
7.
Curr Opin Biotechnol ; 15(5): 456-62, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15464378

ABSTRACT

In recent years, monoclonal antibodies have emerged as an increasingly important class of human therapeutics. A variety of forms of antibodies, including fragments such as Fabs, Fab'2s and single-chain Fvs, are also being evaluated for a range of different purposes. A variety of expression systems and improvements within these systems have been developed to address these growing and diverse needs.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Immunoglobulin Fragments/biosynthesis , Animals , Antibodies, Monoclonal/therapeutic use , Cell Line , Cell Physiological Phenomena , Escherichia coli/immunology , Fungi/immunology , Humans , Immunoglobulin Fragments/therapeutic use , Immunotherapy , Plants/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...