Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 129(4): 1641-1653, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30721156

ABSTRACT

Hyperactivated AKT/mTOR signaling is a hallmark of pancreatic neuroendocrine tumors (PNETs). Drugs targeting this pathway are used clinically, but tumor resistance invariably develops. A better understanding of factors regulating AKT/mTOR signaling and PNET pathogenesis is needed to improve current therapies. We discovered that RABL6A, a new oncogenic driver of PNET proliferation, is required for AKT activity. Silencing RABL6A caused PNET cell-cycle arrest that coincided with selective loss of AKT-S473 (not T308) phosphorylation and AKT/mTOR inactivation. Restoration of AKT phosphorylation rescued the G1 phase block triggered by RABL6A silencing. Mechanistically, loss of AKT-S473 phosphorylation in RABL6A-depleted cells was the result of increased protein phosphatase 2A (PP2A) activity. Inhibition of PP2A restored phosphorylation of AKT-S473 in RABL6A-depleted cells, whereas PP2A reactivation using a specific small-molecule activator of PP2A (SMAP) abolished that phosphorylation. Moreover, SMAP treatment effectively killed PNET cells in a RABL6A-dependent manner and suppressed PNET growth in vivo. The present work identifies RABL6A as a new inhibitor of the PP2A tumor suppressor and an essential activator of AKT in PNET cells. Our findings offer what we believe is a novel strategy of PP2A reactivation for treatment of PNETs as well as other human cancers driven by RABL6A overexpression and PP2A inactivation.


Subject(s)
Carcinoma, Neuroendocrine/enzymology , Oncogene Proteins/metabolism , Pancreatic Neoplasms/enzymology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Tumor Suppressor Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Cell Line, Tumor , Enzyme Activators/pharmacology , G1 Phase/drug effects , G1 Phase/genetics , Humans , Oncogene Proteins/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Proto-Oncogene Proteins c-akt/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/genetics , rab GTP-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...