Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 440
Filter
1.
medRxiv ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39006432

ABSTRACT

Defects in mitochondrial dynamics are a common cause of Charcot-Marie-Tooth disease (CMT), while primary deficiencies in the mitochondrial respiratory chain (MRC) are rare and atypical for this etiology. This study aims to report COX18 as a novel CMT-causing gene. This gene encodes an assembly factor of mitochondrial Complex IV (CIV) that translocates the C-terminal tail of MTCO2 across the mitochondrial inner membrane. Exome sequencing was performed in four affected individuals. The patients and available family members underwent thorough neurological and electrophysiological assessment. The impact of one of the identified variants on splicing, protein levels, and mitochondrial bioenergetics was investigated in patient-derived lymphoblasts. The functionality of the mutant protein was assessed using a Proteinase K protection assay and immunoblotting. Neuronal relevance of COX18 was assessed in a Drosophila melanogaster knockdown model. Exome sequencing coupled with homozygosity mapping revealed a homozygous splice variant c.435-6A>G in COX18 in two siblings with early-onset progressive axonal sensory-motor peripheral neuropathy. By querying external databases, we identified two additional families with rare deleterious biallelic variants in COX18 . All affected individuals presented with axonal CMT and some patients also exhibited central nervous system symptoms, such as dystonia and spasticity. Functional characterization of the c.435-6A>G variant demonstrated that it leads to the expression of an alternative transcript that lacks exon 2, resulting in a stable but defective COX18 isoform. The mutant protein impairs CIV assembly and activity, leading to a reduction in mitochondrial membrane potential. Downregulation of the COX18 homolog in Drosophila melanogaster displayed signs of neurodegeneration, including locomotor deficit and progressive axonal degeneration of sensory neurons. Our study presents genetic and functional evidence that supports COX18 as a newly identified gene candidate for autosomal recessive axonal CMT with or without central nervous system involvement. These findings emphasize the significance of peripheral neuropathy within the spectrum of primary mitochondrial disorders and the role of mitochondrial CIV in the development of CMT. Our research has important implications for the diagnostic workup of CMT patients.

2.
Brain Commun ; 6(4): fcae163, 2024.
Article in English | MEDLINE | ID: mdl-38978724

ABSTRACT

Biallelic expansions of the AAGGG repeat in the replication factor C subunit 1 (RFC1) have recently been described to be responsible for cerebellar ataxia, peripheral neuropathy and vestibular areflexia syndrome. This genetic alteration has also allowed genetic classification in up to one-third of cases with idiopathic sensory neuropathy. Here, we screened a well-characterized cohort of inflammatory neuropathy patients for RFC1 repeat expansions to explore whether RFC1 was increased from background rates and possibly involved in the pathogenesis of inflammatory neuropathy. A total of 259 individuals with inflammatory neuropathy and 243 healthy controls were screened for the AAGGG repeat expansion using short-range flanking PCR and repeat-primed PCR. Cases without amplifiable PCR product on flanking PCR and positive repeat-primed PCR were also tested for the mostly non-pathogenic expansions of the AAAGG and AAAAG repeat units. None of the patients showed biallelic AAGGG expansion of RFC1, and their carrier frequency for AAGGG was comparable with controls [n = 27 (5.2%) and n = 23 (4.7%), respectively; P > 0.5]. Data suggest that the pathologic expansions of AAGGG repeats do not contribute to the development of inflammatory neuropathies nor lead to misdiagnosed cases. Accordingly, routine genetic screening for RFC1 repeat expansion is not indicated in this patient population.

4.
Brain ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38938188

ABSTRACT

Charcot-Marie-Tooth (CMT) disease is a neuromuscular disorder affecting the peripheral nervous system. The diagnostic yield in demyelinating CMT (CMT1) is typically ∼80-95%, of which at least 60% is due to the PMP22 gene duplication. The remainder of CMT1 is more genetically heterogeneous. We used whole exome and whole genome sequencing data included in the GENESIS database to investigate novel causal genes and mutations in a cohort of ∼2,670 individuals with CMT neuropathy. A recurrent heterozygous missense variant p.Thr1424Met in the recently described CMT gene ITPR3, encoding IP3R3 (inositol 1,4,5-trisphosphate receptor 3) was identified. This previously reported p.Thr1424Met change was present in 33 affected individuals from nine unrelated families from multiple populations, representing an unusual recurrence rate at a mutational hotspot, strengthening the gene-disease relationship (GnomADv4 allele frequency 1.76e-6). Sanger sequencing confirmed the co-segregation of the CMT phenotype with the presence of the mutation in autosomal dominant and de novo inheritance patterns, including a four-generation family with multiple affected second-degree cousins. Probands from all families presented with slow nerve conduction velocities, matching the diagnostic category of CMT1. Remarkably, we observed a uniquely variable clinical phenotype for age at onset and phenotype severity in p.Thr1424Met carrying patients, even within families. Finally, we present data supportive of a dominant-negative effect of the p.Thr1424Met mutation with associated changes in protein expression in patient-derived cells.

5.
J Pers Med ; 14(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38929861

ABSTRACT

Early-onset colorectal cancer (EOCRC), defined as colorectal cancer in individuals under 50 years of age, has shown an alarming increase in incidence worldwide. We report a case of a twenty-four-year-old female with a strong family history of colorectal cancer (CRC) but without an identified underlying genetic predisposition syndrome. Two years after primary surgery and adjuvant chemotherapy, the patient developed new liver lesions. Extensive diagnostic imaging was conducted to investigate suspected liver metastases, ultimately leading to a diagnosis of focal nodular hyperplasia. The young age of the patient has prompted comprehensive genomic and transcriptomic profiling in order to identify potential oncogenic drivers and inform further clinical management of the patient. Besides a number of oncogenic mutations identified in the patient's tumour sample, including KRAS G12D, TP53 R248W and TTN L28470V, we have also identified a homozygous deletion of 24.5 MB on chromosome 8. A multivariate Cox regression analysis of this patient's mutation profile conferred a favourable prognosis when compared with the TCGA COADREAD database. Notably, the identified deletion on chromosome 8 includes the WRN gene, which could contribute to the patient's overall positive response to chemotherapy. The complex clinical presentation, including the need for emergency surgery, early age at diagnosis, strong family history, and unexpected findings on surveillance imaging, necessitated a multidisciplinary approach involving medical, radiation, and surgical oncologists, along with psychological support and reproductive medicine specialists. Molecular profiling of the tumour strongly indicates that patients with complex mutational profile and rare genomic rearrangements require a prolonged surveillance and personalised informed interventions.

6.
Brain ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917025

ABSTRACT

Dominant missense mutations of the calcium-permeable cation channel TRPV4 cause Charcot-Marie-Tooth disease (CMT) type 2C and two forms of distal spinal muscular atrophy. These conditions are collectively referred to as TRPV4-related neuromuscular disease and share features of motor greater than sensory dysfunction and frequent vocal fold weakness. Pathogenic variants lead to gain of ion channel function that can be rescued by TRPV4 antagonists in cellular and animal models. As small molecule TRPV4 antagonists have proven safe in trials for other disease indications, channel inhibition is a promising therapeutic strategy for TRPV4 patients. However, the current knowledge of the clinical features and natural history of TRPV4-related neuromuscular disease is insufficient to enable rational clinical trial design. To address these issues, we developed a TRPV4 patient database and administered a TRPV4-specific patient questionnaire. Here, we report demographic and clinical information, including CMT examination scores (CMTES), from 68 patients with known pathogenic TRPV4 variants, 40 of whom also completed the TRPV4 patient questionnaire. TRPV4 patients showed a bimodal age of onset, with the largest peak occurring in the first 2 years of life. Compared to CMT1A patients, TRPV4 patients showed distinct symptoms and signs, manifesting more ambulatory difficulties and more frequent involvement of proximal arm and leg muscles. Although patients reported fewer sensory symptoms, sensory dysfunction was often detected clinically. Many patients were affected by vocal fold weakness (55%) and shortness of breath (55%), and 11% required ventilatory support. Skeletal abnormalities were common, including scoliosis (64%), arthrogryposis (33%), and foot deformities. Strikingly, patients with infantile onset of disease showed less sensory involvement and less progression of symptoms. These results highlight distinctive clinical features in TRPV4 patients, including motor-predominant disease, proximal arm and leg weakness, severe ambulatory difficulties, vocal fold weakness, respiratory dysfunction, and skeletal involvement. In addition, patients with infantile onset of disease appeared to have a distinct phenotype with less apparent disease progression based on CMTES. These collective observations indicate that clinical trial design for TRPV4-related neuromuscular disease should include outcome measures that reliably capture non-length dependent motor dysfunction, vocal fold weakness, and respiratory disease.

7.
Lancet Neurol ; 23(7): 725-739, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876750

ABSTRACT

Nucleotide repeat expansions in the human genome are a well-known cause of neurological disease. In the past decade, advances in DNA sequencing technologies have led to a better understanding of the role of non-coding DNA, that is, the DNA that is not transcribed into proteins. These techniques have also enabled the identification of pathogenic non-coding repeat expansions that cause neurological disorders. Mounting evidence shows that adult patients with familial or sporadic presentations of epilepsy, cognitive dysfunction, myopathy, neuropathy, ataxia, or movement disorders can be carriers of non-coding repeat expansions. The description of the clinical, epidemiological, and molecular features of these recently identified non-coding repeat expansion disorders should guide clinicians in the diagnosis and management of these patients, and help in the genetic counselling for patients and their families.


Subject(s)
Nervous System Diseases , Humans , Nervous System Diseases/genetics , Nervous System Diseases/diagnosis , Diagnosis, Differential , DNA Repeat Expansion/genetics
8.
Clin Auton Res ; 34(3): 341-352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769233

ABSTRACT

BACKGROUND: The cardiomyopathic and neuropathic phenotype of hereditary transthyretin amyloidosis are well recognized. Cardiovascular autonomic dysfunction is less systematically and objectively assessed. METHODS: Autonomic and clinical features, quantitative cardiovascular autonomic function, and potential autonomic prognostic markers of disease progression were recorded in a cohort of individuals with hereditary transthyretin amyloidosis and in asymptomatic carriers of TTR variants at disease onset (T0) and at the time of the first quantitative autonomic assessment (T1). The severity of peripheral neuropathy and its progression was stratified with the polyneuropathy disability score. RESULTS: A total of 124 individuals were included (111 with a confirmed diagnosis of hereditary transthyretin amyloidosis, and 13 asymptomatic carriers of TTR variants). Symptoms of autonomic dysfunction were reported by 27% individuals at T0. Disease duration was 4.5 ± 4.0 years [mean ± standard deviation (SD)] at autonomic testing (T1). Symptoms of autonomic dysfunction were reported by 78% individuals at T1. Cardiovascular autonomic failure was detected by functional testing in 75% individuals and in 64% of TTR carriers. Progression rate from polyneuropathy disability stages I/II to III/IV seemed to be shorter for individuals with autonomic symptoms at onset [2.33 ± 0.56 versus 4.00 ± 0.69 years (mean ± SD)]. CONCLUSIONS: Cardiovascular autonomic dysfunction occurs early and frequently in individuals with hereditary transthyretin amyloidosis within 4.5 years from disease onset. Cardiovascular autonomic failure can be subclinical in individuals and asymptomatic carriers, and only detected with autonomic function testing, which should be considered a potential biomarker for early diagnosis and disease progression.


Subject(s)
Amyloid Neuropathies, Familial , Disease Progression , Prealbumin , Humans , Amyloid Neuropathies, Familial/genetics , Amyloid Neuropathies, Familial/complications , Amyloid Neuropathies, Familial/diagnosis , Amyloid Neuropathies, Familial/physiopathology , Male , Female , Middle Aged , Adult , Prealbumin/genetics , Aged , Heterozygote , Cohort Studies , Biomarkers/blood
9.
Acta Oncol ; 63: 248-258, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698698

ABSTRACT

BACKGROUND AND PURPOSE: The CardioSwitch-study demonstrated that patients with solid tumors who develop cardiotoxicity on capecitabine or 5-fluorouracil (5-FU) treatment can be safely switched to S-1, an alternative fluoropyrimidine (FP). In light of the European Medicines Agency approval of S-1 in metastatic colorectal cancer (mCRC), this analysis provides more detailed safety and efficacy information, and data regarding metastasectomy and/or local ablative therapy (LAT), on the mCRC patients from the original study. MATERIALS AND METHODS: This retrospective cohort study was conducted at 12 European centers. The primary endpoint was recurrence of cardiotoxicity after switch. For this analysis, safety data are reported for 78 mCRC patients from the CardioSwitch cohort (N = 200). Detailed efficacy and outcomes data were available for 66 mCRC patients. RESULTS: Data for the safety of S-1 in mCRC patients were similar to the original CardioSwitch cohort and that expected for FP-based treatment, with no new concerns. Recurrent cardiotoxicity (all grade 1) with S-1-based treatment occurred in 4/78 (5%) mCRC patients; all were able to complete FP treatment. Median progression-free survival from initiation of S-1-based treatment was 9.0 months and median overall survival 26.7 months. Metastasectomy and/or LAT was performed in 33/66 (50%) patients, and S-1 was successfully used in recommended neoadjuvant/conversion or adjuvant-like combination regimens and schedules as for standard FPs. INTERPRETATION: S-1 is a safe and effective FP alternative when mCRC patients are forced to discontinue 5-FU or capecitabine due to cardiotoxicity and can be safely used in the standard recommended regimens, settings, and schedules.


Subject(s)
Capecitabine , Cardiotoxicity , Colorectal Neoplasms , Drug Combinations , Fluorouracil , Oxonic Acid , Tegafur , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Tegafur/adverse effects , Tegafur/administration & dosage , Oxonic Acid/administration & dosage , Oxonic Acid/adverse effects , Oxonic Acid/therapeutic use , Male , Female , Middle Aged , Aged , Retrospective Studies , Cardiotoxicity/etiology , Capecitabine/adverse effects , Capecitabine/administration & dosage , Fluorouracil/adverse effects , Fluorouracil/therapeutic use , Fluorouracil/administration & dosage , Adult , Aged, 80 and over , Antimetabolites, Antineoplastic/adverse effects , Antimetabolites, Antineoplastic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
10.
J Peripher Nerv Syst ; 29(2): 202-212, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581130

ABSTRACT

BACKGROUND: Caused by duplications of the gene encoding peripheral myelin protein 22 (PMP22), Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common hereditary neuropathy. Despite this shared genetic origin, there is considerable variability in clinical severity. It is hypothesized that genetic modifiers contribute to this heterogeneity, the identification of which may reveal novel therapeutic targets. In this study, we present a comprehensive analysis of clinical examination results from 1564 CMT1A patients sourced from a prospective natural history study conducted by the RDCRN-INC (Inherited Neuropathy Consortium). Our primary objective is to delineate extreme phenotype profiles (mild and severe) within this patient cohort, thereby enhancing our ability to detect genetic modifiers with large effects. METHODS: We have conducted large-scale statistical analyses of the RDCRN-INC database to characterize CMT1A severity across multiple metrics. RESULTS: We defined patients below the 10th (mild) and above the 90th (severe) percentiles of age-normalized disease severity based on the CMT Examination Score V2 and foot dorsiflexion strength (MRC scale). Based on extreme phenotype categories, we defined a statistically justified recruitment strategy, which we propose to use in future modifier studies. INTERPRETATION: Leveraging whole genome sequencing with base pair resolution, a future genetic modifier evaluation will include single nucleotide association, gene burden tests, and structural variant analysis. The present work not only provides insight into the severity and course of CMT1A, but also elucidates the statistical foundation and practical considerations for a cost-efficient and straightforward patient enrollment strategy that we intend to conduct on additional patients recruited globally.


Subject(s)
Charcot-Marie-Tooth Disease , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Humans , Adult , Male , Female , Middle Aged , Adolescent , Young Adult , Severity of Illness Index , Child , Myelin Proteins/genetics , Patient Selection , Phenotype , Aged , Genes, Modifier , Child, Preschool
11.
Ann Neurol ; 96(1): 170-174, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38613459

ABSTRACT

Quantitative muscle fat fraction (FF) responsiveness is lower in younger Charcot-Marie-Tooth disease type 1A (CMT1A) patients with lower baseline calf-level FF. We investigated the practicality, validity, and responsiveness of foot-level FF in this cohort involving 22 CMT1A patients and 14 controls. The mean baseline foot-level FF was 25.9 ± 20.3% in CMT1A patients, and the 365-day FF (n = 15) increased by 2.0 ± 2.4% (p < 0.001 vs controls). Intrinsic foot-level FF demonstrated large responsiveness (12-month standardized response mean (SRM) of 0.86) and correlated with the CMT examination score (ρ = 0.58, P = 0.01). Intrinsic foot-level FF has the potential to be used as a biomarker in future clinical trials involving younger CMT1A patients. ANN NEUROL 2024;96:170-174.


Subject(s)
Charcot-Marie-Tooth Disease , Disease Progression , Foot , Magnetic Resonance Imaging , Muscle, Skeletal , Humans , Charcot-Marie-Tooth Disease/diagnostic imaging , Charcot-Marie-Tooth Disease/physiopathology , Child , Male , Female , Adolescent , Magnetic Resonance Imaging/methods , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiopathology , Young Adult
12.
Sci Adv ; 10(15): eadm7600, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608019

ABSTRACT

Myelination is essential for neuronal function and health. In peripheral nerves, >100 causative mutations have been identified that cause Charcot-Marie-Tooth disease, a disorder that can affect myelin sheaths. Among these, a number of mutations are related to essential targets of the posttranslational modification neddylation, although how these lead to myelin defects is unclear. Here, we demonstrate that inhibiting neddylation leads to a notable absence of peripheral myelin and axonal loss both in developing and regenerating mouse nerves. Our data indicate that neddylation exerts a global influence on the complex transcriptional and posttranscriptional program by simultaneously regulating the expression and function of multiple essential myelination signals, including the master transcription factor EGR2 and the negative regulators c-Jun and Sox2, and inducing global secondary changes in downstream pathways, including the mTOR and YAP/TAZ signaling pathways. This places neddylation as a critical regulator of myelination and delineates the potential pathogenic mechanisms involved in CMT mutations related to neddylation.


Subject(s)
Charcot-Marie-Tooth Disease , Schwann Cells , Animals , Mice , Myelin Sheath/genetics , Charcot-Marie-Tooth Disease/genetics , Mutation , Protein Processing, Post-Translational
13.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612579

ABSTRACT

Peripheral and autonomic neuropathy are common disease manifestations in systemic amyloidosis. The neurofilament light chain (NfL), a neuron-specific biomarker, is released into the blood and cerebrospinal fluid after neuronal damage. There is a need for an early and sensitive blood biomarker for polyneuropathy, and this systematic review provides an overview on the value of NfL in the early detection of neuropathy, central nervous system involvement, the monitoring of neuropathy progression, and treatment effects in systemic amyloidosis. A literature search in PubMed, Embase, and Web of Science was performed on 14 February 2024 for studies investigating NfL levels in patients with systemic amyloidosis and transthyretin gene-variant (TTRv) carriers. Only studies containing original data were included. Included were thirteen full-text articles and five abstracts describing 1604 participants: 298 controls and 1306 TTRv carriers or patients with or without polyneuropathy. Patients with polyneuropathy demonstrated higher NfL levels compared to healthy controls and asymptomatic carriers. Disease onset was marked by rising NfL levels. Following the initiation of transthyretin gene-silencer treatment, NfL levels decreased and remained stable over an extended period. NfL is not an outcome biomarker, but an early and sensitive disease-process biomarker for neuropathy in systemic amyloidosis. Therefore, NfL has the potential to be used for the early detection of neuropathy, monitoring treatment effects, and monitoring disease progression in patients with systemic amyloidosis.


Subject(s)
Amyloidosis , Immunoglobulin Light-chain Amyloidosis , Polyneuropathies , Humans , Prealbumin/genetics , Intermediate Filaments , Biomarkers
14.
Front Med (Lausanne) ; 11: 1369136, 2024.
Article in English | MEDLINE | ID: mdl-38576709

ABSTRACT

Targeting the RAS pathway remains the holy grail of precision oncology. In the case of pancreatic ductal adenocarcinomas (PDAC), 90-92% harbor mutations in the oncogene KRAS, triggering canonical MAPK signaling. The smooth structure of the altered KRAS protein without a binding pocket and its affinity for GTP have, in the past, hampered drug development. The emergence of KRASG12C covalent inhibitors has provided renewed enthusiasm for targeting KRAS. The numerous pathways implicated in RAS activation do, however, lead to the development of early resistance. In addition, the dense stromal niche and immunosuppressive microenvironment dictated by oncogenic KRAS can influence treatment responses, highlighting the need for a combination-based approach. Given that mutations in KRAS occur early in PDAC tumorigenesis, an understanding of its pleiotropic effects is key to progress in this disease. Herein, we review current perspectives on targeting KRAS with a focus on PDAC.

15.
Brain ; 147(7): 2334-2343, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38527963

ABSTRACT

Heterozygous RTN2 variants have been previously identified in a limited cohort of families affected by autosomal dominant spastic paraplegia (SPG12-OMIM:604805) with a variable age of onset. Nevertheless, the definitive validity of SPG12 remains to be confidently confirmed due to the scarcity of supporting evidence. In this study, we identified and validated seven novel or ultra-rare homozygous loss-of-function RTN2 variants in 14 individuals from seven consanguineous families with distal hereditary motor neuropathy (dHMN) using exome, genome and Sanger sequencing coupled with deep-phenotyping. All affected individuals (seven males and seven females, aged 9-50 years) exhibited weakness in the distal upper and lower limbs, lower limb spasticity and hyperreflexia, with onset in the first decade of life. Nerve conduction studies revealed axonal motor neuropathy with neurogenic changes in the electromyography. Despite a slowly progressive disease course, all patients remained ambulatory over a mean disease duration of 19.71 ± 13.70 years. Characterization of Caenorhabditis elegans RTN2 homologous loss-of-function variants demonstrated morphological and behavioural differences compared with the parental strain. Treatment of the mutant with an endoplasmic/sarcoplasmic reticulum Ca2+ reuptake inhibitor (2,5-di-tert-butylhydroquinone) rescued key phenotypic differences, suggesting a potential therapeutic benefit for RTN2-disorder. Despite RTN2 being an endoplasmic reticulum (ER)-resident membrane shaping protein, our analysis of patient fibroblast cells did not find significant alterations in ER structure or the response to ER stress. Our findings delineate a distinct form of autosomal recessive dHMN with pyramidal features associated with RTN2 deficiency. This phenotype shares similarities with SIGMAR1-related dHMN and Silver-like syndromes, providing valuable insights into the clinical spectrum and potential therapeutic strategies for RTN2-related dHMN.


Subject(s)
Pedigree , Humans , Male , Female , Child , Adult , Adolescent , Young Adult , Middle Aged , Animals , Lower Extremity/physiopathology , Caenorhabditis elegans , Muscle Spasticity/genetics , Muscle Spasticity/physiopathology , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/physiopathology , Mutation
16.
Pract Neurol ; 24(4): 263-274, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38548322

ABSTRACT

Whole-genome sequencing (WGS) has recently become the first-line genetic investigation for many suspected genetic neurological disorders. While its diagnostic capabilities are innumerable, as with any test, it has its limitations. Clinicians should be aware of where WGS is extremely reliable (detecting single-nucleotide variants), where its reliability is much improved (detecting copy number variants and small repeat expansions) and where it may miss/misinterpret a variant (large repeat expansions, balanced structural variants or low heteroplasmy mitochondrial DNA variants). Bioinformatic technology and virtual gene panels are constantly evolving, and it is important to know what genes and what types of variant are being tested; the current National Health Service Genomic Medicine Service WGS offers more than early iterations of the 100 000 Genomes Project analysis. Close communication between clinician and laboratory, ideally through a multidisciplinary team meeting, is encouraged where there is diagnostic uncertainty.


Subject(s)
Whole Genome Sequencing , Humans , Whole Genome Sequencing/methods , Nervous System Diseases/genetics , Nervous System Diseases/diagnosis , Genetic Testing/methods
17.
Brain ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38481354

ABSTRACT

Charcot-Marie-Tooth disease (CMT) is one of the most common and genetically heterogeneous inherited neurological diseases, with more than 130 disease-causing genes. Whole genome sequencing (WGS) has improved diagnosis across genetic diseases, but the diagnostic impact in CMT is yet to be fully reported. We present the diagnostic results from a single specialist inherited neuropathy centre, including the impact of WGS diagnostic testing. Patients were assessed at our specialist inherited neuropathy centre from 2009-2023. Genetic testing was performed using single gene testing, next-generation sequencing targeted panels, research whole exome and whole genome sequencing (WGS), and latterly WGS through the UK National Health Service. Variants were assessed using the American College of Medical Genetics and Genomics and Association for Clinical Genomic Science criteria. Excluding patients with hereditary ATTR amyloidosis, 1515 patients with a clinical diagnosis of CMT and related disorders were recruited. 621 patients had CMT1 (41.0%), 294 CMT2 (19.4%), 205 intermediate CMT (CMTi, 13.5%), 139 hereditary motor neuropathy (HMN, 9.2%), 93 hereditary sensory neuropathy (HSN, 6.1%), 38 sensory ataxic neuropathy (2.5%), 72 hereditary neuropathy with liability to pressure palsies (HNPP, 4.8%) and 53 'complex' neuropathy (3.5%). Overall, a genetic diagnosis was reached in 76.9% (1165/1515). A diagnosis was most likely in CMT1 (96.8%, 601/621), followed by CMTi (81.0%, 166/205) and then HSN (69.9%, 65/93). Diagnostic rates remained less than 50% in CMT2, HMN and complex neuropathies. The most common genetic diagnosis was PMP22 duplication (CMT1A; 505/1165, 43.3%), then GJB1 (CMTX1; 151/1165, 13.0%), PMP22 deletion (HNPP; 72/1165, 6.2%) and MFN2 (CMT2A; 46/1165, 3.9%). We recruited 233 cases to the UK 100,000 Genomes Project (100KGP), of which 74 (31.8%) achieved a diagnosis; 28 had been otherwise diagnosed since recruitment leaving a true diagnostic rate of WGS through the 100KGP of 19.7% (46/233). However, almost half of the solved cases (35/74) received a negative report from the study, and the diagnosis was made through our research access to the WGS data. The overall diagnostic uplift of WGS for the entire cohort was 3.5%. Our diagnostic rate is the highest reported from a single centre, and has benefitted from the use of WGS, particularly access to the raw data. However, almost one quarter of all cases remain unsolved, and a new reference genome and novel technologies will be important to narrow the 'diagnostic gap'.

18.
Eur J Neurol ; 31(5): e16199, 2024 May.
Article in English | MEDLINE | ID: mdl-38409938

ABSTRACT

BACKGROUND AND PURPOSE: Charcot-Marie-Tooth disease type 1A (CMT1A) is the most prevalent hereditary neuropathy worldwide and classically has slow nerve conduction velocity (NCV), in most cases below 38 m/s. Two unrelated patients with motor NCVs in the upper limbs above 38 m/s are reported. METHOD: Case report. RESULTS: Two genetically confirmed CMT1A patients are presented, from two unrelated families (one of British origin and the other of Brazilian origin). Both individuals had upper limb motor NCVs above 38 m/s, with values ranging from 41.9 to 45 m/s in the median nerve and from 42 to 42.3 m/s in the ulnar nerve. They presented with a very mild phenotype, with CMT Neuropathy Score version 2 (CMTNSv2) of 6 and 5, respectively. In contrast, affected family members within both kinships exhibited a classical phenotype with more severe disease manifestation (CMTNSv2 ranging from 12 to 20) and motor NCVs below 30 m/s. CONCLUSION: These cases, although very rare, highlight the importance of testing PMP22 duplication in patients with intermediate conduction velocities.


Subject(s)
Charcot-Marie-Tooth Disease , Humans , Charcot-Marie-Tooth Disease/genetics , Phenotype , Neural Conduction , Median Nerve , Family
19.
Clin Neurophysiol ; 159: 81-95, 2024 03.
Article in English | MEDLINE | ID: mdl-38377648

ABSTRACT

OBJECTIVES: The treatment of hereditary transthyretin amyloidosis polyneuropathy (ATTRv-PN) has been revolutionised by genetic therapies, with dramatic improvements in patient outcomes. Whilst the optimal timing of treatment initiation remains unknown, early treatment is desirable. Consequently, the aim of the study was to develop biomarkers of early nerve dysfunction in ATTRv-PN. METHODS: Ulnar motor and sensory axonal excitability studies were prospectively undertaken on 22 patients with pathogenic hereditary transthyretin amyloid (ATTRv) gene variants, 12 with large fibre neuropathy (LF+) and 10 without (LF-), with results compared to age- and sex-matched healthy controls. RESULTS: In motor axons we identified a continuum of change from healthy controls, to LF- and LF+ ATTRv with progressive reduction in hyperpolarising threshold electrotonus (TEh40(10-20 ms): p = 0.04, TEh40(20-40 ms): p = 0.01 and TEh40(90-10 ms): p = 0.01), suggestive of membrane depolarisation. In sensory axons lower levels of subexcitability were observed on single (SubEx) and double pulse (SubEx2) recovery cycle testing in LF+ (SubEx: p = 0.015, SubEx2: p = 0.015, RC(2-1): p = 0.04) suggesting reduced nodal slow potassium conductance, which promotes sensory hyperexcitability, paraesthesia and pain. There were no differences in sensory or motor excitability parameters when comparing different ATTRv variants. CONCLUSIONS: These progressive changes seen across the disease spectrum in ATTRv-PN suggest that axonal excitability has utility to identify early and progressive nerve dysfunction in ATTRv, regardless of genotype. SIGNIFICANCE: Axonal excitability is a promising early biomarker of nerve dysfunction in ATTRv-PN.


Subject(s)
Amyloid Neuropathies, Familial , Polyneuropathies , Humans , Axons , Amyloid Neuropathies, Familial/diagnosis , Amyloid Neuropathies, Familial/genetics , Biomarkers
20.
Amyloid ; 31(2): 95-104, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38348665

ABSTRACT

BACKGROUND: Neurofilament light chain (NfL) has emerged as a sensitive biomarker in hereditary transthyretin amyloid polyneuropathy (ATTRv-PN). We hypothesise that NfL can identify conversion of gene carriers to symptomatic disease, and guide treatment approaches. METHODS: Serum NfL concentration was measured longitudinally (2015-2022) in 59 presymptomatic and symptomatic ATTR variant carriers. Correlations between NfL and demographics, biochemistry and staging scores were performed as well as longitudinal changes pre- and post-treatment, and in asymptomatic and symptomatic cohorts. Receiver-operating analyses were performed to determine cut-off values. RESULTS: NfL levels correlated with examination scores (CMTNS, NIS and MRC; all p < .01) and increased with disease severity (PND and FAP; all p < .05). NfL was higher in symptomatic and sensorimotor converters, than asymptomatic or sensory converters irrespective of time (all p < .001). Symptomatic or sensorimotor converters were discriminated from asymptomatic patients by NfL concentrations >64.5 pg/ml (sensitivity= 91.9%, specificity = 88.5%), whereas asymptomatic patients could only be discriminated from sensory or sensorimotor converters or symptomatic individuals by a NfL concentration >88.9 pg/ml (sensitivity = 62.9%, specificity = 96.2%) However, an NfL increment of 17% over 6 months could discriminate asymptomatic from sensory or sensorimotor converters (sensitivity = 88.9%, specificity = 80.0%). NfL reduced with treatment by 36%/year and correlated with TTR suppression (r = 0.64, p = .008). CONCLUSIONS: This data validates the use of serum NfL to identify conversion to symptomatic disease in ATTRv-PN. NfL levels can guide assessment of disease progression and response to therapies.


Subject(s)
Amyloid Neuropathies, Familial , Biomarkers , Neurofilament Proteins , Humans , Amyloid Neuropathies, Familial/blood , Amyloid Neuropathies, Familial/genetics , Amyloid Neuropathies, Familial/diagnosis , Neurofilament Proteins/blood , Female , Male , Middle Aged , Biomarkers/blood , Aged , Adult , Prealbumin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...