Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 806129, 2021.
Article in English | MEDLINE | ID: mdl-35069663

ABSTRACT

The N-degron pathway is a branch of the ubiquitin-proteasome system where amino-terminal residues serve as degradation signals. In a synthetic biology approach, we expressed ubiquitin ligase PRT6 and ubiquitin conjugating enzyme 2 (AtUBC2) from Arabidopsis thaliana in a Saccharomyces cerevisiae strain with mutation in its endogenous N-degron pathway. The two enzymes re-constitute part of the plant N-degron pathway and were probed by monitoring the stability of co-expressed GFP-linked plant proteins starting with Arginine N-degrons. The novel assay allows for straightforward analysis, whereas in vitro interaction assays often do not allow detection of the weak binding of N-degron recognizing ubiquitin ligases to their substrates, and in planta testing is usually complex and time-consuming.

2.
Nat Chem Biol ; 13(6): 647-654, 2017 06.
Article in English | MEDLINE | ID: mdl-28369040

ABSTRACT

The nematode Caenorhabditis elegans requires exogenous cholesterol to survive and its depletion leads to early developmental arrest. Thus, tight regulation of cholesterol storage and distribution within the organism is indispensable. Here, we present a novel class of C. elegans phosphorylated glycosphingolipids, phosphoethanolamine glucosylceramides (PEGCs), capable of rescuing larval arrest induced by sterol starvation. We describe the total synthesis of a major PEGC species and demonstrate that the PEGC synthetic counterpart suppresses the dauer-constitutive phenotype of Niemann-Pick C1 (NPC1) and DAF-7/TGF-ß mutant worms caused by impaired intracellular sterol trafficking. PEGC biosynthesis depends on functional NPC1 and TGF-ß, indicating that these proteins control larval development at least partly through PEGC. Furthermore, glucosylceramide deficiency dramatically reduced PEGC amounts. However, the resulting developmental arrest could be rescued by oversaturation of food with cholesterol. Taken together, these data show that PEGC is essential for C. elegans development through its regulation of sterol mobilization.


Subject(s)
Caenorhabditis elegans/metabolism , Cholesterol/metabolism , Glycosphingolipids/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Chromatography, Liquid , Mass Spectrometry , Molecular Structure , Mutation , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...