Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Soc Rev ; 53(1): 545, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38050457

ABSTRACT

Correction for 'A tutorial on asymmetric electrocatalysis' by Jonas Rein et al., Chem. Soc. Rev., 2023, https://doi.org/10.1039/D3CS00511A.

2.
Chem Soc Rev ; 52(23): 8106-8125, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37910160

ABSTRACT

Electrochemistry has emerged as a powerful means to enable redox transformations in modern chemical synthesis. This tutorial review delves into the unique advantages of electrochemistry in the context of asymmetric catalysis. While electrochemistry has historically been used as a green and mild alternative for established enantioselective transformations, in recent years asymmetric electrocatalysis has been increasingly employed in the discovery of novel asymmetric methodologies based on reaction mechanisms unique to electrochemistry. This tutorial review first provides a brief tutorial introduction to electrosynthesis, then explores case studies on homogenous small molecule asymmetric electrocatalysis. Each case study serves to highlight a key advance in the field, starting with the historic electrification of known asymmetric transformations and culminating with modern methods relying on unique electrochemical mechanistic sequences. Finally, we highlight case studies in the emerging reasearch areas at the interface of asymmetric electrocatalysis with biocatalysis and heterogeneous catalysis.

3.
Science ; 380(6646): 706-712, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37200427

ABSTRACT

Catalytic enantioselective methods that are generally applicable to a broad range of substrates are rare. We report a strategy for the oxidative desymmetrization of meso-diols predicated on a nontraditional catalyst optimization protocol by using a panel of screening substrates rather than a singular model substrate. Critical to this approach was rational modulation of a peptide sequence in the catalyst incorporating a distinct aminoxyl-based active residue. A general catalyst emerged, providing high selectivity in the delivery of enantioenriched lactones across a broad range of diols, while also achieving up to ~100,000 turnovers.

4.
Angew Chem Int Ed Engl ; 62(17): e202218213, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-36823344

ABSTRACT

Nitrogen atom-rich heterocycles and organic azides have found extensive use in many sectors of modern chemistry from drug discovery to energetic materials. The prediction and understanding of their energetic properties are thus key to the safe and effective application of these compounds. In this work, we disclose the use of multivariate linear regression modeling for the prediction of the decomposition temperature and impact sensitivity of structurally diverse tetrazoles and organic azides. We report a data-driven approach for property prediction featuring a collection of quantum mechanical parameters and computational workflows. The statistical models reported herein carry predictive accuracy as well as chemical interpretability. Model validation was successfully accomplished via tetrazole test sets with parameters generated exclusively in silico. Mechanistic analysis of the statistical models indicated distinct divergent pathways of thermal and impact-initiated decomposition.

5.
Nature ; 604(7905): 292-297, 2022 04.
Article in English | MEDLINE | ID: mdl-35189623

ABSTRACT

Recent research in medicinal chemistry has suggested that there is a correlation between an increase in the fraction of sp3 carbons-those bonded to four other atoms-in drug candidates and their improved success rate in clinical trials1. As such, the development of robust and selective methods for the construction of carbon(sp3)-carbon(sp3) bonds remains a critical problem in modern organic chemistry2. Owing to the broad availability of alkyl halides, their direct cross-coupling-commonly known as cross-electrophile coupling-provides a promising route towards this objective3-5. Such transformations circumvent the preparation of carbon nucleophiles used in traditional cross-coupling reactions, as well as stability and functional-group-tolerance issues that are usually associated with these reagents. However, achieving high selectivity in carbon(sp3)-carbon(sp3) cross-electrophile coupling remains a largely unmet challenge. Here we use electrochemistry to achieve the differential activation of alkyl halides by exploiting their disparate electronic and steric properties. Specifically, the selective cathodic reduction of a more substituted alkyl halide gives rise to a carbanion, which undergoes preferential coupling with a less substituted alkyl halide via bimolecular nucleophilic substitution to forge a new carbon-carbon bond. This protocol enables efficient cross-electrophile coupling of a variety of functionalized and unactivated alkyl electrophiles in the absence of a transition metal catalyst, and shows improved chemoselectivity compared with existing methods.

6.
ACS Cent Sci ; 7(8): 1347-1355, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34471679

ABSTRACT

Organic electrochemistry has emerged as an enabling and sustainable technology in modern organic synthesis. Despite the recent renaissance of electrosynthesis, the broad adoption of electrochemistry in the synthetic community, and especially in industrial settings, has been hindered by the lack of general, standardized platforms for high-throughput experimentation (HTE). Herein, we disclose the design of the HTe - Chem, a high-throughput microscale electrochemical reactor that is compatible with existing HTE infrastructure and enables the rapid evaluation of a broad array of electrochemical reaction parameters. Utilizing the HTe - Chem to accelerate reaction optimization, reaction discovery, and chemical library synthesis is illustrated using a suite of oxidative and reductive transformations under constant current, constant voltage, and electrophotochemical conditions.

7.
Chemistry ; 26(45): 10195-10198, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32232873

ABSTRACT

A novel approach towards the activation of different arenes and purines including caffeine and theophylline is presented. The simple, safe and scalable electrochemical synthesis of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) aryl ethers was conducted using an easy electrolysis setup with boron-doped diamond (BDD) electrodes. Good yields up to 59 % were achieved. Triethylamine was used as a base as it forms a highly conductive media with HFIP, making additional supporting electrolytes superfluous. The synthesis was optimized using Design of Experiment (DoE) techniques giving a detailed insight to the significance of the reaction parameters. The mechanism was investigated by cyclic voltammetry (CV). Subsequent transition metal-catalyzed as well as metal-free functionalization led to interesting motifs in excellent yields up to 94 %.

SELECTION OF CITATIONS
SEARCH DETAIL
...